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Abstract—Log-linear analysis is the primary statis-
tical approach to discovering conditional dependencies
between the variables of a dataset. A good log-linear
analysis method requires both high precision and sta-
tistical efficiency. High precision means that the risk
of false discoveries should be kept very low. Statistical
efficiencymeans that the method should discover actual
associations with as few samples as possible. Classical
approaches to log-linear analysis make use of χ2 tests
to control this balance between quality and complexity.
We present an information-theoretic approach to log-
linear analysis. We show that our approach 1) re-
quires significantly fewer samples to discover the true
associations than statistical approaches – statistical
efficiency – 2) controls for the risk of false discoveries
as well as statistical approaches – high precision –
and 3) can perform the discovery on datasets with
hundreds of variables on a standard desktop computer
– computational efficiency.
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High-dimensional data; Log-linear Analysis; Graphical
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I. Introduction
Association discovery is a fundamental data mining

task. Association discovery is generally divided into two
main approaches: finding associations between values or
items [1], [2], [3], or between variables [4], [5], [6].

Log-linear analysis is the well established statistical
technique for finding associations between discrete vari-
ables in data [7]. In contrast, data mining research into
association discovery has focused primarily on finding
associations between variable-values or items [1]. Each of
these approaches, finding associations between variables
or between variable-values has distinct contexts in which
it is more useful. In some cases, the focus is on which
settings of which variables are associated with which
specific outcomes. In other cases, for example, if one wishes
to model a complex multivariate distribution, one needs to
know which variables interact in which ways.

The general objective of log-linear analysis (LLA) is
to select a log-linear model that satisfactorily explains
the observed frequencies of a given dataset. General ap-
proaches to LLA are exponential with respect to the
number of variables, because the model must be evaluated
over all its possible outcomes. There are 2M outcomes
for M binary variables, which makes LLA infeasible for

large M . This is why, in the general case, finding a
statistically significant log-linear model for a dataset is
limited to a dozen variables at most. However, with our
Chordalysis-χ2 technique [6] we recently demonstrated
that for the class of multiplicative or decomposable log-
linear models, a statistically standard χ2-based evaluation
can be performed, which allows LLA to scale to high-
dimensional data1.

We propose a new evaluation metric for decomposable
models that is based on the information-theoretic Mini-
mum Message Length (MML) principle [8]. We demon-
strate that our method discovers existing correlations with
significantly fewer samples than statistical methods based
on χ2 goodness-of-fit tests, while consistently controlling
for the risk of false discoveries. In addition, we show that,
by melding advanced data mining techniques with results
from graph theory, we can perform LLA on datasets with
hundreds of variables on a standard desktop computer.2
This paper is organized as follows. In Section II, we

formalize the problem. In Section III, we present our
solution Chordalysis-Mml, which enables the discov-
ery of statistically sound multi-way correlations between
variables for hundred-dimensional datasets. In section IV,
we place this work in the context of related research. In
Section V, we conduct experiments that demonstrate 1)
the quality and performance of our approach compared to
the state of the art and 2) the relevance of our approach on
real-world high-dimensional datasets. Finally, we conclude
this work and describe future research in Section VI.

II. Problem statement
A. Log-linear models and log-linear analysis

Let D be a dataset of N samples over a set ofM discrete
variables V = {V1, · · · , VM}. Every variable V takes values
in Dom(V ). D is drawn from a probability distribution pV
over V, giving rise to maximum likelihood estimates p̂V :

p̂V : Dom(V1)× · · · ×Dom(VM ) → [0, 1] ⊂ R
x =

(
x(1), · · · ,x(M)

)
7→ Ox /N

1Throughout the paper, we use the term “high-dimensional data”
to designate datasets with a high number of variables, regardless of
the number of samples.

2The open source Chordalysis-Mml software is available at https:
//sourceforge.net/p/chordalysis.

https://sourceforge.net/p/chordalysis
https://sourceforge.net/p/chordalysis
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where Ox designates the observed frequencies for a vector
of values x in D.
Log-linear models use a first-degree polynomial func-

tion to model the logarithm of the frequencies that can be
observed in a contingency table. The expected frequency
mx of x under the model has the form:

log(mx) = u+
M∑
i=1

ui(x(i)) +
∑

16i<j6M
ui,j (x(i),x(j))

+ · · · + u1,··· ,M (x) (1)

The u functions represent the interactions between vari-
ables that are used to model the observed frequencies. For
example, a model that includes the term ui,j considers the
interaction between the ith and the jth variable. Similarly,
a model that includes the term ui,j,k will consider the
three-way interaction between the ith, the jth and the kth

variable, while a model that does not include ui,j,k (having
set it to zero) will not consider the corresponding three-
way interaction. The saturated model is the one including
all terms.
Log-linear analysis (LLA) is the general name given

to methods that seek to select a statistically significant log-
linear model from data. This corresponds to determining
which u... terms have to be part of the model. LLA
classically uses hypothesis testing to decide if the current
reference model (the null hypothesis) has to be replaced
by a candidate model that is a variation of the reference
model (the tested hypothesis).

The objective of LLA is different from the one of
probabilistic inference. LLA seeks an explanatory model
from which conclusions about conditional dependen-
cies/indepencies can be drawn. Probabilistic inference
seeks a predictive model. Note that an explanatory model
may also predict well and conversely; we emphasize here
that the focus and use of the two families of methods
differ, and have thus led to different methods. In prac-
tice, LLA starts from an initial model (the null model),
and iteratively performs transformations to this model,
as long as there is enough evidence to add (or remove)
a term to (from) the model. LLA is thus much more
conservative than probabilistic inference: terms will be
added or removed from the model, if and only if there is
enough evidence to be confident that no false discovery will
be committed. In medicine for example, this conservative
behaviour is critical, because it makes it possible to confi-
dently decide that drugs have an impact on diseases. This
is mainly why LLA has such widespread use in medicine,
but also in statistics and in social sciences, and why it is
integrated into all the classical statistical packages (SPSS,
SAS, R, and so on). To summarize, LLA methods must
have the following two characteristics:
1. precision – very low rate of false discoveries: mini-

mize the probability of accepting incorrect hypotheses;
2. statistical efficiency: infer the correct hypotheses

with as little data as possible.

B. LLA for high-dimensional data
Methods for LLA methods do not scale up beyond a

dozen variables for the general class of log-linear models.
This is because evaluating the replacement of the current
reference model is exponential in the number of variables.
This assessment implies iteration over all possible com-
binations of values. While this is feasible for ten binary
variables (#operations > 210 = 1024), it becomes in-
feasible when the number of variables is high (e.g., for
100 variables, #operations > 2100 > 1030). Furthermore,
these operations have to be performed not just once, but
for every potential model that is considered – a number
that itself grows exponentially with the dimensionality of
the data.

To scale LLA to high-dimensional data, researchers
have focused on a subclass of log-linear models that are
decomposable (or multiplicative). We first introduce de-
composable models, and then explain why these models
are necessary to scale up LLA to high-dimensional data.
Definition 1: [9] A log-linear model is graphical if,

whenever the model contains all two-factor terms gener-
ated by a higher-order interaction, the model also contains
the higher-order interaction.
Property 1: Being completely determined by its two-

factor terms, graphical models can be represented by an
undirected graph, where the vertices represent the vari-
ables and the edges represent the two-factor terms.

Note that graphical log-linear models are equivalent to
Markov networks.
Definition 2: A graphical log-linear model is decompos-

able iff the corresponding graph is chordal, i.e., iff the
graph does not admit chord-less cycles of length strictly
greater than three.

There are three main reasons to focus on decomposable
models:
1. Closed-form MLE: Decomposable models are the
only log-linear models that have closed-form maximum
likelihood estimates (MLEs) [7]. This dramatically im-
proves the computational efficiency of their evaluation.
2. Scalability of the evaluation: Several evaluation
metrics can be rewritten for decomposable models, so that
they scale up to high-dimensional data: Kullbach-Leibler
[10], an MDL score [11] and χ2 goodness-of-fit tests [6].
3. Usefulness: This sub-class is not only practical but
also a useful class of models. This is ensured by the fact
that, for any non-decomposable log-linear model µ, there
always exists a log-linear model that is decomposable
and that subsumes µ and hence can exactly model any
distribution modeled by µ. The proof comes from the fact
that any minimal triangulation [12] will provide such a
subsuming model.

C. Limitations of current approaches
As mentioned above, evaluation frameworks that scale

up to high-dimensional data via decomposable models
include KL divergence in [13], [10] (KL-2001), an MDL



score in [11] (AH-2004, for Altmueller-Haralick) and χ2

goodness-of-fit tests [6] (Chordalysis-χ2). KL-2001 usu-
ally overfits the true structure, because it optimizes the
entropy of the model without taking into account the
complexity of the model. AH-2004 often favors overfitting
models, because it uses an compression-inefficient encod-
ing scheme: it over-estimates the number of parameters of
the model, and uses an inefficient encoding for both the
graph structure and the data. Of the three existing tech-
niques, only the standard method in statistics – namely
χ2 goodness-of-fit testing – has a very low-rate of false
discoveries, and thus qualifies as a sound LLA framework.
These conclusions will be confirmed in the experiments.

However, the low-rate of false discoveries of χ2 based
methods comes at a price: they require many more samples
to accept correct hypotheses. Moreover, χ2-based meth-
ods have two functional drawbacks: 1) they rely on the
existence of the Maximum Likelihood Estimates (MLE),
while particular configurations of zeros in the observed
frequencies lead to nonexistent MLE [14], [7], and 2) the
confidence on the tests rely on the expected frequencies
being greater than 5 [15], which prevents testing of high-
order interactions for most datasets.

III. Chordalysis-MML
Our method for log-linear analysis, Chordalysis-Mml,

is presented in this section. We start by briefly outlining
our approach, and then describe in detail its main features.

Our approach includes the following three features:
1. An information-theoretic score: We propose an

information-theoretic scoring method for decomposable
models. We prove that the length of a lossless encoding
scheme can be expressed in terms of the graph structure
associated with the model.
2. Efficiently scoring edges: During the forward

selection, the hypotheses/models compared always differ
by one edge only. We prove that the evaluation of any new
edge depends upon the scoring of four local sub-structures
of the graph only.
3. Efficiently scoring sub-structure: We show that

the scoring of sub-structures of the graph exhibits a num-
ber of overlapping computations at different levels. Once
every sub-score is correctly memoized, we show that the
scoring relies completely on the computation of marginal
frequencies for different combinations of values.
We will show that the conjunction of these features allow
us to overcome the limitations of state-of-the-art methods,
i.e., they make Chordalysis-Mml:
1. control for false discoveries as well as χ2 tests
2. require far fewer samples to accept true hypotheses
3. not reliant on MLE existing, contrary to χ2 methods
4. not require the expected frequencies to be greater

than 5, contrary to χ2-based methods
5. require the computation of a very limited number of

marginal frequencies, and thus is scalable to datasets with
hundreds of variables on a standard computer.

A. An MML score for decomposable models
We start by briefly presenting the theoretical framework

that is used for developing our scoring scheme, as well
as formalizing decomposable models, we present introduce
our score for decomposable models.
Overview of Minimum Message Length (MML): The

MML criterion provides an information-theoretic objective
for problems of inference where the goal is to find the
best explanation (or theory, hypothesis, model) for a set of
observed data [16]. MML relies on quantifying the amount
of information required to convey losslessly the observed
data in an explanation message. The best hypothesis is
the one that can convey the entire data set in the shortest
possible explanation message.

MML [16], like its close cousin MDL (Minimum De-
scription Length) [17], is a practical version of Kolmogorov
Complexity [18]. All three embrace the motive: Induction
by Compression. MML allows priors to be stated more
naturally [8]. Thus, it is particularly suited for measuring
the quality of an explanation, which aligns perfectly with
the explanatory needs of LLA (see Section II-A).

More formally, for some observed data D and a hypoth-
esis H that offers an explanation of D, Bayes’s theorem
gives: p(H,D) = p(H) × p(D|H) = p(D) × p(H|D) where
p(H) is the prior probability of hypothesis H, p(D) is
the prior probability of data D, p(H|D) is the posterior
probability of H given D, and p(D|H) is the likelihood.
Using Shannon’s theory of communication, the amount of
information for an explanation of the D with H is:

I(H,D) = I(H) + I(D|H) = I(D) + I(H|D) (2)

where I(x) = − log(p(x)) gives the optimal code length to
convey some event x whose probability is p(x). This im-
mediately gives an objective means to compare competing
hypotheses H1 and H2 on the same data D:

I(H1|D)−I(H2|D) = I(H1)+I(D|H1)−I(H2)−I(D|H2)
(3)

A concrete realization of this framework comes from
describing it as a communication process between an imag-
inary transmitter (Alice) and receiver (Bob) connected
over a Shannon channel. Alice’s objective is to send the
observed data D using an explanation message in a form
such that Bob can receive and decode the data D precisely
as Alice sees it. If Alice can find the best hypothesis on
the data, Bob will receive a decodable explanation message
most economically: The best inference about the data is
the hypothesis that minimizes the total message length.

Alice sends the explanation message of D in two parts.
In the first part, she transmits the hypothesis,H, she could
find on the data D, taking I(H) bits. In the second, she
transmits the details of the observed data D not explained
by H, taking I(D|H) bits (i.e., the deviations from H).

In our case, the hypothesisH on the data is a parameter-
ized decomposable modelM. To transmit the explanation
message, Alice thus need to transmit, first the structure



of the graph G associated to M, then the parameters P
of the models, and finally the data D given M. Later in
this section, we will describe the lossless encoding of these
three parts of the explanation message.
Decomposable models: Let us introduce some further no-

tation for decomposable models, which we use to construct
our encoding. For a decomposable model µ, its probability
pµ can be evaluated using marginal probabilities of a small
number of terms. Let G = (V, E) be the graph associated
to the model. The expression of pµ is directly linked to
G, and relies on the maximal cliques, C, and minimal
separators, S, of the graph G. The probability pµ of a
vector x under a decomposable modelM is expressed by:

pµ(x) =

∏
C∈C

pC(x)∏
S∈S

pS(x)
(4)

with pA representing the marginal probability of p̂V over a
set of variables A. The definition and efficient computation
of C and S are presented in [6] (App. 1). Note that their
computation requires only O(|V| + |E|) operations for
chordal graphs.
1) Encoding the graph: First to be transmitted is the

structure of the graph G that is associated to our model
M. To this end, it is sufficient to send the edges E of
the graph: we first state the number of edges (|E|), and
then the particular combination of |E| edges that the
graph exhibits. Note that the variables do not need to be
transmitted because it is common to all possible models,
and thus will not play any role in the model selection.

Given that the number of possible edges in a graph is
#maxE = |V|·|V−1|

2 , we have:
I(G) = log (1 + #maxE) + log

(
#maxE
|E|

)
(5)

2) Encoding the parameters: Once the structure of the
graph has been sent, the decoder can reconstruct the
graph, as well as the maximal cliques. We now have to
transmit the parameters P of model pµ. It follows from
Eqn. 4 that:

I(pµ) =
∑
C∈C I(pC)−

∑
S∈S I(pS) (6)

We thus have to evaluate the length of the message for the
transmission of the marginal probabilities pA,∀A ∈ C ∪S.
Let us use OA

x to designate the observed frequencies for
the configuration x with respect to the set of variables A.
For any A ∈ C ∪ S, the MLE for pA is: p̂A(x) = OA

x
N . This

means that any marginal probability over A ∈ C∪S can be
transmitted by sending N and the associated frequencies
OA

x . N need not be transmitted because it is common to
any model of D. In addition, any frequency OA

x can be
transmitted in log(N + 1) bits, because OA

x ∈ [[0, N ]]. Note
that the last frequency does not have to be transmitted,
given that it will be equal to the difference between N and
the sum of the transmitted frequencies (which aligns with

the number of degrees of freedom). The message length of
the parameters P given the graph structure G is then:

I(P|G) = log(N+1)·
(∑
C∈C

#Param(C)−
∑
S∈S

#Param(S)
)

(7)
with #Param(A) = −1 +

∏
V ∈A |Dom(A)|.

Note that G and P constitute the modelM.
3) Encoding the Data: The classical way to transmit the

data D is to send every instance x of D in − log (pµ(x))
bits. This leads to:

I(D|M) = N ·H(M) =
∑
C∈C

H(C)−
∑
S∈S

H(S) (8)

with H(M) =
∑
x pµ(x) log(pµ(x)) the entropy of pµ.

However, in our case, we transmitted the parametrized
model using the exact frequencies observed in D. We will
show how this information can be used to shorten the part
of the explanation message that is about the data D.

Consider an example to motivate our intuition. Imagine
that we have a model of a tossed coin. This model has
only one parameter: the probability of a head p(H) (the
probability of a tail is 1 − p(H)). Let us assume that we
tossed the coin 100 times and observed 60 heads. MLE
gives p(H) = 0.6. Transmitting the data will then take:

I(D|M) = 100 log(100)− 60 log(60)− 40 log(40)
≈ 97.1 bits (9)

However, if the receiver knows that 60 heads have been
observed, the only information that is required is the way
these heads appeared in D. This can be done by stating
what combination of 60 heads among 100 tosses has been
observed, which is exactly

(100
60
)
. Sending this combination

will then take:
I(D|M) = log

(
100
60

)
= log(100!)− log(60!)− log(40!)
≈ 93.5 bits (10)

The quantity I(D|M) from Eqn. 10 will always be
smaller than the one from Eqn. 9 [20] and is thus a shorter
way to send the data.

We will now demonstrate how to find the length of send-
ing the data given the model, for decomposable models.

Stating the position of the observed frequencies for
every maximal clique would state the data. For the model
over three variables with two edges A − B and B − C,
stating the positions of all combinations of A and B
would indeed make it possible to reconstitute D for these
variables, and similarly for B and C. However, such a
transmission is redundant, because the combinations for
B would have been stated twice. This is because B is
present (and hence stated) in two different cliques. To
avoid “overcounting” the combinations involving B, we
have to correct the length of the message by the length
of stating the combinations for B.

The difficulty is to know what the message should be
corrected by, if the combinations are stated for every



maximal clique. This corresponds to knowing what infor-
mation would be sent several times if we were to send the
combinations for the maximal cliques. Similarly to B being
the intersection between AB and BC, it turns out that the
set of all the pairwise intersections between the maximal
cliques is the minimal separators.
We now introduce the length of stating the data D given

that the model M has been stated using the frequencies,
as in Eqn. 7. Stating the combinations for a subset of
variables A ⊆ V given the frequencies OA is given by [20]:

IA(D|OA) = log(N !)−
∑

x∈Dom(A)

log(OAx !) (11)

This directly gives the length of stating D givenM:
I(D|M) = |C| log

(
N !
)
−
∑
C∈C

∑
x∈Dom(C)

log
(
OCx !

)
− |S| log

(
N !
)

+
∑
S∈S

∑
x∈Dom(S)

log
(
OSx !

)
(12)

B. Efficient scoring edges
The classical search strategy for LLA in high-dimension

is forward selection, which yield a hill-climbing algorithm
[9]. Forward selection starts with a simple model (usu-
ally all variables independent) and iteratively adds terms
(accepting more complex hypotheses), so long as there is
sufficient evidence to accept new hypotheses. Note that
hill-climbing strategies are currently the only ones that
are compatible with LLA, because statistical goodness-of-
fit tests (χ2) require the compared models to be nested.

For forward selection, the generation of candidate alter-
natives to a current model relies on the addition of edges,
because graphical models are completely defined by their
edges (or two-factor terms). In order to ensure that the
candidate graphs remain decomposable, it is necessary to
consider only edges that result in a chordal graph. Such
edges are called 2-pairs [21]. Every time a new model
is chosen to replace the previous best one (i.e., at each
iteration of the forward selection process), we build a set of
eligible interactions associated with the new model. This
can be efficiently done using the clique-graph [13]. One
new candidate model will then be constructed for every
eligible interaction/edge.

A reference modelM? will thus be repeatedly compared
to a candidate model Mc that differs by only one edge.
Below, we show that the score that we use to decide if
Mc should replaceM?, I(Mc|D)−I(M?|D), is computed
from a very limited number of marginal frequencies only.
1) Length difference for the graph structure: Let us

denote G? = (V, E?) and Gc = (V, Ec) for the respective
graphs ofM? andMc. Eqn. 5 directly gives:

I(Gc)− I(G?) = log |E?| − log |Ec| (13)

This information can be computed in O(1) operations.
2) Length difference for the parameters: Let us denote

C? (resp. S?) and Cc (resp. Sc) the sets of maximal cliques
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Figure 1. Illustrative example of two decomposable models with
nine variables: M? is depicted with strong lines and adding the edge
{1, 4} (dashed line) results in the model Mc.

(resp. minimal separators) of modelsM? andMc. Given
Eqn. 7, we have I(Pc|Gc)− I(P?|G?) =

log(N + 1) ·
( ∑
Cc∈Cc

#Param(Cc)−
∑
C?∈C?

#Param(C?)

+
∑
S?∈C?

#Param(S?)−
∑
Sc∈Sc

#Param(Sc)
)

(14)

This formula can be extremely simplified. When Mc

replacesM? in the forward selection procedure, they differ
by one edge only. The associated graphs thus have close
structures and many of the terms expressed in Eqn. 14
cancel out.

Consider the example illustrated in Fig. 1. Because of
the similar cliques and separator between M? and Mc,
Eqn. 14 will be simplified to:
I(Pc|Gc)− I(P?|G?) = log(N + 1) ·

(
#Param({1234})

+ #Param({23})−#Param({123})−#Param({234})
)

This is a direct consequence of graph-theoretical results
on chordal graphs: if two decomposable models differ only
in one edge {a, b}, then the maximal cliques and minimal
separators differ only in a local sub-structure of the graph,
namely around the minimal separator of a and b [13]. Using
[13] (Theorem 4.2 and Corollary 4.1), we can formulate the
following theorem:
Theorem 1: If two decomposable models Mc ⊂ M?

differ only in one edge {a, b}, and let Sab be the minimal
separator of {a, b}, then we have I(Pc|Gc)− I(P?|G?) =

log(N + 1) ·
(

#Param(Sab ∪ {a, b}) + #Param(Sab)
−#Param(Sab ∪ {a})−#Param(Sab ∪ {b})

)
(15)

Note that in the example in Fig.1, S14 = {2, 3}.
3) Length difference for the Data: Similarly, and given

Eqn. 12, we can formulate the following theorem about
assessing the difference in the message length to state D:
Theorem 2: If two decomposable models Mc ⊂ M?

differ only in one edge {a, b}, and let Sab be the minimal
separator of {a, b}, then we have I(D|Mc)− I(D|M?) =

=
∑

x∈Dom(Sab∪{a})

log
(
OSab∪{a}

x !
)

+
∑

x∈Dom(Sab∪{b})

log
(
OSab∪{b}

x !
)

−
∑

x∈Dom(Sab∪{a,b})

log
(
OSab∪{a,b}

x !
)
−
∑

x∈Dom(Sab)

log
(
OSab

x !
)
(16)

In summary, we have shown that assessing the replace-
ment of M? by Mc depends upon sub-scores that are
associated to four different cliques only. This extremely re-
duced expression of message length dramatically improves



the scalability of our approach: the evaluation step only
depends on a local graph sub-structure of the models.

C. Efficiently computing sub-scores
As a result of Section III-B, and using Eqn. 3, we can

rewrite the function that we are trying to minimize:

I(Mc|D)− I(M?|D)
= I(Gc)− I(G?) + ID(Sab ∪ {a}) + ID(Sab ∪ {b})
−ID(Sab ∪ {a, b})− ID(Sab) (17)

where

ID(A) = − log(N + 1) ·#Param(A) +
∑

x∈Dom(A)

log
(
OAx !

)
(18)

Given that we have seen in Eqn. 13 that I(Gc)− I(G?) is
a constant time operation, the scalability of our approach
relies on the ability to compute efficiently sub-scores ID(A)
for different A ⊆ V.
Computing every sub-score once. Let us consider
again the example illustrated in Fig. 1. Assessing the
replacement of M? by Mc requires computation of
ID({123}), ID({234}), ID({23}) and ID({1234}). Among
these four sub-scores, the first two are sub-scores associ-
ated to maximal cliques of M?. As a consequence, they
were previously computed when M? was a candidate
for replacing the former reference model. The sub-score
ID({23}) has also been computed in the process of select-
ing either {123} or {234}. Clearly, the forward selection
procedure exhibits many overlapping sub-problems. As
a result, we make Chordalysis-Mml memoize these
partial solutions. The replacement of M? by Mc is then
reduced to a function of only one new term, namely
ID({1234}). This compares to the direct calculation of
I(Mc|D)− I(M?|D) that would require the computation
of 20 different sub-scores.
Computing every logarithm and log factorial once.
Another case of overlapping sub-problems can be found
at a lower level. The evaluation of ID(A) for a set of
variables A ⊆ V repeatedly computes logarithms and
factorials. It is well-known that the logarithm of a factorial
can be computed with log(n!) =

∑n
k=1 log(k). There are

however two main issues with this computation: 1) the
log(.) function is computationally expensive and 2) for
every ID(A), the log function is going to be called n times.
However, we can observe that ∀A ⊆ V,∀x ∈ A,OA

x 6 N .
We thus make Chordalysis-Mml pre-compute all log-
factorials and store them in an array of size N + 1 (with
O(1) access). Similarly, we pre-compute and store all
logarithms up to max(N + 1,#maxE).
Computing marginal frequencies. The scalability of
Chordalysis-Mml now mainly relies on the ability to
efficiently compute marginal frequencies (OA

x ,∀x ∈ A
and for different A ⊆ V). The evaluation of M? vs. Mc,
most of the time, will require computing a single sub-score
(for a single A ⊆ V). Association discovery between values

has carefully studied the efficient computation of marginal
frequencies. Chordalysis-Mml uses the Tidsets vertical
description of D with a bitset representation, because
it ensures efficient computation of marginal frequencies
through the CPU primitive AND.

IV. Related research

Researchers have investigated the learning of graphical
log-linear models, also named Markov networks or Markov
random fields from high-dimensional data.
A first approach consists of building log-linear models

on subsets of variables – for which the classical LLA
scales up – and then to combine these sub-models [22],
[23]. However, because they make strong assumptions
about the independence between the variables, they often
inaccurately discover associations between variables (see
for example Section 5.2 in [23]), and thus do not align
with the required high-precision of LLA.
A second approach uses `1-regularizers. This makes the

search possible in high dimensional spaces, by biasing the
search towards models for which many parameters are
zero. Different configurations have been studied: perform-
ing a logistic regression for every variable independently
[24], focusing on a reduced subset of features [25] or
finding a set of variables that best divides the graph [26].
Because these methods aim mostly at being predictive (as
opposite to explanatory), and because they focus on local
substructures, they often result in false discoveries (see for
example the precision trend depicted in [24] – Section 6)
and thus cannot be considered as LLA methods.
A third approach evaluates the trade-off

quality/complexity of the models in order to ensure that
only associations, for which there is enough evidence, are
included in the model. This family is mostly represented
by the LLA methods that have been introduced in
statistics, and that use of χ2 goodness-of-fit tests to
assess this trade-off on the full model [9]. However, these
approaches have progressively lost favor in the last decade
due to their exponential complexity with the number of
variables, which limited them to datasets with at most a
dozen variables. In parallel, researchers have investigated
decomposable models: efficient algorithms to compute
their maximal cliques and minimal separators [21], to
triangulate graphs [12] or to perform hill-climbing search
[13]. To the best of our knowledge, the first attempt
at performing the full LLA, with the only condition
for the graph to be chordal, is from [13], after [10]
showed that the Kullback-Leibler divergence can be
computed using marginal frequencies that align with the
maximal cliques and minimal separators of the graph.
The Kullback-Leibler divergence however does not take
into account any complexity of the model (other than
the regularization). As a result, KL-based methods
usually exhibit numerous false discoveries, thus being
incompatible with LLA.



To address this issue, two different methods have been
proposed. On the one hand, [11] developed an scoring
metric for decomposable models that penalizes more com-
plex models (AH-2004). On the other hand, [6] showed
with Chordalysis-χ2 that the statistically established
χ2-framework can be fully applied, while scaling up to
datasets with hundreds of variables. Our experiments in
the next section show that the Chordalysis-χ2 is already
superior to AH-2004: it has a lower rate of false discovery
while being slightly more statistically efficient.

In experimental evaluation in the next section, we show
that our Chordalysis-Mml method outperforms the
state-of-the-art techniques: no false discovery has ever
been observed, while Chordalysis-Mml is shown to
require fewer samples than the state-of-the-art methods
to discover true associations.

V. Experiments

A. Datasets from known models
Assessing the quality of LLA requires having knowledge

about the multi-way interactions that take place in data.
Therefore we start by evaluating the discovery with data
that is sampled from known distributions (sets of inter-
actions and associated probability tables). We can then
compare the discovered interactions to the true structure
from which the data was sampled.

The structure of a graphical model is completely deter-
mined by its pairwise interactions. We can thus assess the
recovery of the structure in terms of the edges of the graph.
Each possible edge in the graph can be present or absent in
the true model and each true edge can also have been dis-
covered or not. This corresponds to the standard scheme
true/false positive/negative, to which are associated the
usual precision P, recall R and F-measure F = 2 · P·RP+R .
Two main criteria are used to assess LLA methods: false
discovery rate (FDR), (1−P), and statistical efficiency. We
thus report the FDR and the F-measure (to quantify the
recovery of the graph structure with increasing number of
samples), as well as the execution time.

We compare Chordalysis-Mml to all state-of-the-art
methods: KL-2001 [13], AH-2004 [11], and Chordalysis-
χ2 [6]. Note, we implemented all four methods as modifi-
cations to the original Chordalysis-χ2 software that we
previously released [6], thus making the execution times
truly comparable.
Data structures: We designed three different models from
which the data was sampled. This allows comparison of the
behavior of all the methods in terms of false discovery,
statistical efficiency and runtime, while controlling what
the true model is. We designed:
• D1 to have three independent variables only, in order

to verify that no method is finding a correlation when none
have to be discovered (Fig. 2-(a)).
• D2 to have three 3-way and three 2-way interactions,

in order to test the ability of the different methods to

(a) (b) (c)

Figure 2. Data structures that are randomly sampled. (a) D1. (b)
D2. (c) D3.

recover conditional dependencies on distributions over 9
variables (Fig. 2-(b)).
• D3 to finely compare all the methods on a complex

distribution over 150 variables. D3 comprises 150 variables
and includes 24 5-way (in three interlaced groups of eight
5-ways), three 4-way, two 3-way and three 2-way interac-
tions as well as 55 independent variables (Fig. 2-(c)).
Configuration note: To handle high-dimensional data with
KL-2001, it is necessary to set the maximum clique size
(treewidth) to 5 for D3. Note that this is actually “help-
ing” the method. Following recommendations in statistics
regarding the p-value threshold [27], we set p = 0.001 for
Chordalysis-χ2.
AH-2004’s encoding: We will see that AH-2004 exhibits
a very different behavior to Chordalysis-Mml. This is
due to three main elements of the encoding that AH-2004
uses. First, it over-estimates the number of parameters
of the model by undercounting for the overlap between
different cliques (as opposed to Sec. III-A1). Second, it
uses an inefficient encoding of the data given the model
N · H(M) (see Sec. III-A3). Third, it encodes the graph
by favoring complex structure and largely over-estimates
the lengths of edges (far more than one bit per edge).
1) Sanity check – Results for D1 and D2: Dataset D1

was used to test if the methods include correlations in
the model when there are actually no correlations at all
between the variables. The results are depicted on the
left side of Fig. 3(a). Chordalysis-χ2, AH-2004 and
the proposed Chordalysis-Mml behave consistently and
never discover any correlation (0% of false discoveries and
100% of the structure recovered). KL-2001, on the other
hand, quickly retrieves the model with all possible edges
(saturated model), leading to 100% of false discoveries.
This “disqualification” of the KL-based method is consis-
tent with classical results (see [6] for example), because
KL-based methods optimize the entropy of the model
without taking into account the complexity of the model.

Dataset D2 was used to test the discovery of simple
conditional dependencies/independencies. The results are
depicted on the right side of Fig. 3(b). Similarly to
the previous results, KL-2001 rapidly (and incorrectly)
converges to the saturated model, while Chordalysis-
χ2 and Chordalysis-Mml behave consistently: 1) they
never discover any nonexistent correlation (0% of false
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Figure 3. Results of the experiments on D1 and D2.

discoveries) and 2) they recover the complete graph struc-
ture (with similar statistical efficiency).3 However, on this
slightly more complicated structure, AH-2004 exhibits a
number of false discoveries. Due to the inefficient encoding
elements described above, AH-2004 overfits when only a
few thousand samples are available as evidence of the
correlations in the graph.

Note that Chordalysis-χ2, AH-2004 and
Chordalysis-Mml selected the model in less than
100ms, regardless of the number of samples.
2) High-dimensional experiment – Results for D3: D3

allows us to perform full comparison of the methods.
It is a high-dimensional dataset with 150 variables that
is drawn from a complex distribution with multi-way
correlations between the variables (Fig. 2-(c)). This makes
the discovery difficult, because there is very little evidence
of high-order correlation from lower-order ones in data.
This graph structure (and associated dataset) are thus a
good test bed to compare the methods at a large scale.

Fig. 4(a) illustrates the false discovery rate on this
dataset. KL-2001 is confirmed as not suitable for LLA by
retrieving incorrect correlations more than half of the time.
The overfitting behavior of AH-2004 is also confirmed: it
exhibits about 10% of false discoveries, which makes it
unsuitable for most uses of LLA. LLA is indeed often used
for example in medicine to decide upon the conditional
dependencies/independencies of different medical condi-
tions and treatments. Such a high false discovery rate is
clearly incompatible with the validation, for instance, of
the influence of a drug on a disease. The stability and
consistency of Chordalysis-χ2 and Chordalysis-Mml
are confirmed with 0% of false discovery, regardless of the

3Note that KL-2001 has a higher F-measure with fewer samples,
because an overfitting model will also find actual correlations, since
it will eventually include all of them.

number of samples that is used.
Fig. 4(b) illustrates the statistical efficiency on D3 and

confirms that Chordalysis-Mml outperforms the state-
of-the-art methods:

1. Chordalysis-Mml is the only method that recovers
the full structure of the graph (Chordalysis-χ2 misses
10 edges while AH-2004 misses 20 edges and includes 21
incorrect edges).

2. Chordalysis-Mml is slightly more statistically effi-
cient: it requires fewer samples to reach the same recovery-
rate of the graph structure. For example, with 100,000
samples Chordalysis-Mml recovers 66% of the graph
while Chordalysis-χ2 recovers 49% only. In addition,
Chordalysis-Mml requires only 150,000 samples to re-
cover 90% of the graph structure; Chordalysis-χ2 re-
quires more than half a million samples to reach the same
level of quality.

In addition, note that Chordalysis-Mml is very sta-
ble: the quality of the recovery does not significantly
oscillate. This is a strong evidence of the quality and
stability of our approach, because once Chordalysis-
Mml decides upon the presence of a correlation, increasing
the amount of evidence does not challenge the decision.
This supports the statistical power of the decision taken
by Chordalysis-Mml being sound and consistent.

Finally, we consider the computational efficiency.
Fig. 4(c) shows that both Chordalysis approaches are
faster than AH-2004. This is mainly due to the fact
that the latter does not have any edge-optimized scoring,
and performs additional operations on the clique graph
(e.g., spanning tree, topological sort) that are not used in
Chordalysis-Mml (note that we use the memoization
strategies from Sec. III-C for all four methods). The com-
putation time for this high-dimensional dataset is stable at
around 10min while slowly increasing with the number of
samples. The slight difference between Chordalysis-χ2

and Chordalysis-Mml is due to the statistical efficiency
of Chordalysis-Mml: as it discovers more of the true
correlations with fewer samples, it actually explores more
of the search space, which takes more time.

B. Results on a real dataset
To demonstrate real-world performance we compare

the results of Chordalysis-χ2 and of Chordalysis-
Mml to a dataset from an epidemiological study of the
elderly (EPESE) [28].4 It is important to note that only
qualitative analysis is possible on real data, because there
is no “ground truth”. This is why we have conducted the
previous experiments on datasets for which we can control
the structure from which the data has been generated.

The resulting model (selected in less than 4 s) is shown
in Fig. 5. Expert assessment of this dataset is provided

4We have shown in the previous section that the results of KL-
2001 and AH-2004 do not meet the standards of log-linear analysis.
However, for completeness, the reader can find the corresponding
results at http://www.tiny-clues.eu/Research/ICDM2014-MML/.

http://www.tiny-clues.eu/Research/ICDM2014-MML/
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Figure 4. Results of the experiments on D3.

in [29]. Many of the multi-way relationships retrieved by
both methods have supporting evidence, such as the links
between blood pressure variables and the use of medi-
cation to treat high-blood pressure, and the correlations
between pain in the chest or shortness of breath and heart
attack. Due to limited space, we now focus on the main
differences between the two results. The correlations that
are retrieved by Chordalysis-Mml are generally more
sensible. For example, Chordalysis-Mml linked Insulin
to Diabetes rather than to the ability to walk a mile
(WalkMile); taking medication for high blood pressure is
linked to the fact of having a high blood pressure; Smoking
is linked to the fact of having ever smoked (EverSmoked)
rather than to being married (Married); having been
married is linked to being married rather than to being
retired, etc.
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Figure 5. Models selected for the EPESE dataset.

Chordalysis-χ2 also detected no correlation between
the need for help to walk (HelpToWalk) and any other
variable. In contrast, Chordalysis-Mml quite logically
linked it with the ability for the patient to walk for
a mile by him- or her-self. More subtly, Chordalysis-
χ2 detected no correlation including CorrectAge while
Chordalysis-Mml has associated it to the ability for
a patient to walk a mile by him- or her-self. Knowing
that correctness of the declared age is indicative of the
patient’s mental health, this correlation could be explained
by the loss of mobility that is often observed with the late
stages of dementia. More surprisingly, Chordalysis-Mml
linked PainWalking with taking medication for high blood
pressure. This might however be explained by high blood
pressure being commonly treated with diuretics, which
often decrease the body’s levels of potassium, leading
specifically to a high-probability of leg cramps.

VI. Conclusions

In this paper, we proposed an information-theoretic
approach to log-linear analysis (LLA), that is based on
the Minimum Message Length principle. Our experiments
have shown that our method never committed any false
discovery and requires fewer samples to reach the same
quality as state-of-the-art methods. Moreover, our the-
orems for decomposable models, melded with advanced
data mining techniques and results from graph theory,
allow our method to scale up to datasets with more than
a hundred variables on a standard desktop computer. Our
contributions to association discovery between variables
include:

1) A new scoring for decomposable models that results
in the best LLA method so far.



2) Because our statistic applies to any set of frequencies,
it makes LLA possible where classical χ2 tests cannot
be used, i.e., when the MLEs do not exist or when co-
occurrence matrices exhibit small frequencies. This is a
major theoretical property that extends the frontiers of
the applicability of LLA.

3) Proof that our statistic can be expressed in terms of
the graph structure of the model.

4) Proof that our statistic for comparing two decompos-
able models that differ by a single edge can be calculated
using a function of four marginal entropies only.

5) Efficient techniques for computing our statistic using
the above proofs and techniques developed for itemset
mining, as well as memoization of marginal entropies,
ensuring that marginal entropies are only computed once.

One limitation of our approach is that the search only
considers additions to a model that involve adding a single
edge that results in a decomposable graph. It may thus fail
finding associations between variables where the addition
of an edge would result in a non-chordal graph. It would
be valuable to explore techniques that can either step
through graphs that are not decomposable, or can consider
steps that involve addition of multiple edges, specifically,
an edge of interest and the additional edges required to
triangulate the resulting graph. This is a difficult problem
because there can be many ways to triangulate a single
graph and there is no obvious efficient way to select one
from the many [12]. Additionally, contrary to classical ap-
proaches in statistics that rather assess the modification of
two nested models, Chordalysis-Mml can assess models
in isolation. This property opens the way to randomized
search (e.g., simulated annealing), which should improve
the quality of models selected by LLA procedures.

Association discovery is a fundamental data mining
task. We believe that we have significantly improved the
discovery of trustworthy associations between variables in
high-dimensional data, and hope that this will prove to be
a powerful addition to the data mining toolbox.
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