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Abstract Traditional genome alignment methods based on dynamic programming are often a. com-
putational expensive, b. unable to compare the genomes of distant species and c. unable to deal with
low information regions. We are presenting an information-theoretic approach for pairwise genome
local alignment. Our method, the expert model aligner, the XMAligner, relies on the expert model
compression algorithm. To align two sequences, XMAligner first compresses one sequence to measure
the information content at each position in the sequence. Then the sequence is compressed again but
this time with the background knowledge from the other sequence to obtain the conditional information
content. The information content and the conditional information content from the two compressions
are examined. Similar regions in the compressed sequence should have the conditional information
content lower than the individual information content. The method is applied to align the genomes of
Plasmodium falciparum and Plasmodium knowlesi against other three Plasmodium genomes with dif-
ferent levels of diversity. Despite the differences in nucleotide composition of the reference sequences,
the conserved regions found by XMAligner in three alignments are relatively consistent. A strong
correlation was found between the similar regions detected by the XMAligner and the hypothetical
annotation of Plasmodium species. The alignment results can be integrated into the DNAPlatform for
visualisation.

1 Background

Advances in sequencing technology allow the high
throughput production of biological sequences ex-
tracted in sequencing laboratories around the world.
The exponential increase of biological data extracted
recently has led to the development of bioinformatics
applications which attempt to solve biological prob-
lems by applying techniques from other disciplines
such as statistics and computer science. One of the
most fundamental objectives of bioinformatics is the
discovery of important patterns from large biologi-
cal databases. This task can be quite challenging as
conventional information extraction methods can be

overwhelmed by volume and misled by statistical bi-
ases. It is important to develop new and novel tools
for analysing such data. Such tools need to be time
efficient as biological sequences can be very long.

The most important tool for sequence analysis is
sequence alignment which attempts to arrange bio-
logical sequences of DNA, RNA or protein to iden-
tify regions of similarity. The similarities between
sequences could provide clues to discover the rela-
tionship between species, annotate new sequences or
compare an unknown sequence against existing se-
quences in a large database. There are two types of
sequence alignment, namely global alignment and lo-
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cal alignment. Global alignment attempts to match
the entire sequence from one end to the other of each
sequence. This technique is suitable for comparing
two short sequences which are expected to have sim-
ilar functions such as two proteins or two genes. On
the other hand, when analysing long sequences such
as chromosomes or genomes, local alignment which
finds only similar regions between two sequences is
more suitable.

Most alignment methods are based on dynamic
programming paradigm. Needleman-Wunsch [1] and
Smith-Waterman [2] are two examples of early global
alignment and local alignment respectively. The
quadratic time complexity of dynamic programming
was feasible in the early days of bioinformatics when
sequences to be analysed were relatively short. How-
ever, in the last decade, as more and more long
sequences available, it becomes impossible to use
the dynamic programming algorithms for analysing
chromosomes and genomes which can be hundreds
of millions of bases long.

Traditional alignment methods also rely heavily
on a substitution matrix which is selected empiri-
cally or based on some assumptions about the dis-
tance between two species. Using a generic substitu-
tion matrix may be justified for protein alignment as
different amino acids have different properties. How-
ever, for DNA, more than one codon can code for an
amino acid. Different strains show different prefer-
ences for a codon that encodes a given amino acid [3].
It is therefore, sometimes very hard to find a suitable
substitution matrix for alignment, especially when
the sequences being analysed are unknown.

Other problems associated with genome align-
ment are rearrangements and low information re-
gions. Genomes often contain a great deal of repet-
itive and low information regions. It is estimated
that the human genome contains more than 50% of
repeat DNA and about 30000 CpG islands which
are genomic regions that contain a high frequency of
CG [4]. Such sequences of biased composition and
low information could cause false positives to align-
ment algorithms.

In this paper, we present XMAligner, a novel
method for genomic alignment based on informa-
tion theory. First, the information content for each
position in a sequence is measured by the expert
model compression algorithm [5]. Next the sequence
is compressed again with the background knowledge
from the other sequence. The resulting conditional
information content should be lower in related parts

of the two sequences. This method does not require
masking out low information areas; hence no infor-
mation is lost. It can adaptively build a substitution
matrix by gathering statistics for the two sequences
being analysed. The method is shown to be practi-
cal and can handle sequences of hundreds of millions
of bases.

1.1 Related work

Since alignment is the most basic tool for sequence
analysis, much research has been done in this field.
The dynamic programming inspired alignment algo-
rithms [1] and [2] were developed in 1970 and 1981
respectively. These methods attempt to match all
possible pairs the two sequences by using a scoring
scheme and find the optimal alignment which has
the best matching score. They have been used in-
tensively, primarily for comparing proteins or DNA
sequences of a single gene.

These alignment approaches require run-time
and space complexity of O(mn) for aligning two se-
quences of lengths m and n and therefore are less
attractive for long sequences. They became infeasi-
ble for many applications in early 1990s which re-
quired matching a sequence with a relatively large
database of known sequences. To trade the sensitiv-
ity for running time, heuristic search methods are
used. Instead of comparing every single base of the
two sequences, FASTA [6] and BLAST [7], the two
most popular database search tools, search for seeds
of k consecutive matches. Seeds are then extended
to include substitutions and gaps by dynamic pro-
gramming approach to form similar regions.

Since 1995 when the first genome was sequenced
[8], there has been much research on tools that are
capable of comparing genomes. Most alignment
methods rely on the ideas of FASTA and BLAST;
they use different variations for finding seeds and
extending seeds to find conserved regions. A hash
table is used in SAHA [9] for locating seeds which
are matched k-tuples. The seeds are then sorted and
linked together. Gapped BLAST [10] and BLASTZ
[11] find seeds of short near exact matches. Seeds
are extended first without allowing gaps. Each gap-
free match that is longer than a certain threshold is
then extended by the dynamic programming proce-
dure that permits gaps. The BLAST Like Alignment
Tool, BLAT, [12] works in a similar way to BLAST
to find seeds, and clumps similar regions together to
form larger regions.
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A number of genome global alignment tools make
use of suffix tree [13] to find seeds instead of us-
ing hash table that can only find fixed length k-mer
matches. MUMmer [14,15] represents a sequence by
a suffix tree and finds the maximum unique matches
(MUMs) of the two genomes. The MUMs are then
clustered based on size, gap and distance and the
gaps between clusters are closed using a modified
Smith-Waterman algorithm. Similarly, AVID [16]
also locates exact matches as seeds using suffix trees.
Short matches are considered not biologically sig-
nificant and are filtered out while longer matches
are used as non-overlapping, non-crossing anchors.
AVID recursively aligns regions between anchors by
dynamic programming to perform global alignment.
The Multiple Genome Aligner, MGA [17], extends
the idea to perform multiple alignment by detect-
ing all maximal multiple exact matches (multiMEM)
longer than a threshold.

One problem in genomic alignment research is
that genomes contain a great deal of low informa-
tion areas such as repeats and skewed composition of
bases. Alignment tools based on string matching and
dynamic programming are prone to false positives in
these areas. The common technique to address this
problem in [9,11,12,14–17] is to mask out low infor-
mation content areas, but this may miss out some
important patterns. Some genes, for example, are
copied abundantly back to the genome to maximise
their inclusive fitness. Masking out low information
areas also gives rise the issue “how low is low” [18].

Dynamic programming alignment algorithms
rely on a scoring scheme of mismatches and gaps
to extend seeds. This includes a substitution matrix
and gaps scores. A substitution matrix is drawn
from some assumptions about the sequences being
analysed such as the rate of mutation (PAM [19]) or
the minimum percentage identity of the sequences
(BLOSUM [20]). While much research has been
done to find substitution matrices for protein align-
ment, little attention has been paid to DNA substi-
tution matrix. Since more than one codon can code
for the same amino acid, and different species have
different preferences for nucleotide composition, it
is more difficult to anticipate the mutation rates in
DNA sequences. For that reason, genomic align-
ment tools often use some ad-hoc substitution ma-
trices and gap scores. Furthermore, DNA sequences
tend to be more divergent than proteins and there-
fore these methods often fail to align more distant
genomes.

We take an information theory [21] approach to
sequence analysis. Similar to Powell et al. [18], our
work is based on the premise that if two sequences
are related, one sequence must tell something useful
about the other [18]. The information content of a
sequence can be measured by lossless compression.
By examining information content sequences [22]
produced with and without a background sequence,
we can identify the similar regions of the two se-
quences. The biological related compression expert
model [5] in our earlier work provides attractive fea-
tures for genome comparison. It performs among the
best biological compression algorithms in the litera-
ture in practical time and space requirement. More
importantly, it can measure the information content
of each individual nucleotide in a sequence.

Plasmodium falciparum and Plasmodium vivax
cause the two most dangerous malaria parasites in
the world and they together account for as many
as three million deaths a year. P. falciparum, the
deadliest malaria, is prevalent in sub-Saharan Africa
while P. vivax, the most common malaria and is
found mainly in Asia and Latin America. Though
the two species are both malaria parasites and cause
similar symptoms, their genomes are greatly differ-
ent. The P. falciparum genome consists of 80.6% AT
while the AT composition in the P. vivax genome is
62.4% [23]. Even in coding regions, the AT ratios in
P. falciparum and P. vivax are 76.22% and 53.70%
respectively though the proteins of the two species
are relatively similar. A distinct advantage of our al-
gorithm is that it is able to compare sequences with
such biased composition.

2 Method
Information theory directly relates entropy to the
transmission of a sequence under a statistical model
of compression. Suppose a sequence X is to be trans-
mitted over a reliable channel. The sender first com-
presses X using a compression model and transmits
the encoded message to the receiver, who decodes
the compressed stream using the same model to re-
cover the original sequence X. The information con-
tent IX of sequence X is the amount of information
actually transmitted, i.e. the length of the encoded
message.

Suppose a sequence Y related to X is available
to both parties, the sender needs to transmit only
the information of X that is not contained in Y .
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Since the receiver also knows Y , X can be recovered
correctly. The amount of information actually trans-
mitted in this case is called conditional information
content of X given Y , denoted as IX|Y , which is ex-
pected to be lower than the information content of
X, i.e. IX|Y < IX . The more related the two se-
quences are, the more information the two sequences
share, the shorter message is transmitted. The mu-
tual information of X and Y is defined as the differ-
ence between the information content and the con-
ditional information content: IX;Y = IX − IX|Y .

If one can find the references to the shared in-
formation between two sequences, one can compute
the optimal alignment of the two sequences and vice
verse. For genome analysis, a local alignment is ap-
plicable since only conserved areas show the simi-
larities of the two sequences. The more similarities
the alignment can find, the more shared information
one can find. We define the optimal alignment as
the one that produces the maximum mutual infor-
mation content. The alignment of two sequences is in
fact the best compression of one sequence given the
background knowledge of the other. The method of
compression is largely based on our early work, the
expert model (XM) [5].

2.1 The Expert Model

As a statistical compression method, the XM algo-
rithm compresses each symbol of a sequence X by
forming the probability distribution for the symbol
and then using a primary compression scheme to
code it. The information content symbol xi is com-
puted as the negative log of the probability of the
symbol:

I(i) = −logPr(xi) (1)

The probability distribution at a position is based
on symbols seen previously. Correspondingly, the
decoder, also having seen all previous decoded sym-
bols, is able to compute the identical probability dis-
tribution and can recover the symbol at the position.

In order to form the probability distribution of
a symbol, the algorithm maintains a set of experts,
whose predictions of the symbol are combined into
a single probability distribution. An expert is any
entity that can provide a probability distribution
at a position. Expert opinions about a symbol are
blended to give a combined prediction for the sym-
bol.

The statistics of symbols may change over the

sequence. One expert may perform well on some re-
gion, but could give bad advice on others. A symbol
is likely to have similar statistical properties to the
context surrounding, particularly the context pre-
ceding the symbol. The reliability of an expert is
evaluated from its recent predictions. A reliable ex-
pert has high weight for combination while an unre-
liable one has little influence on the final prediction
or may be ignored.

2.2 Type of Experts

An expert can be anything that provides a reason-
ably good probability distribution for a position in
the sequence. A simple expert can be a Markov
model (Markov expert). An order-k Markov expert
gives the probability of a symbol in a position given
k preceding symbols. Initially, the Markov expert
does not have any prior knowledge of the sequence
and thus gives a uniform distribution to a symbol.
The probability distribution adapts as the encoding
proceeds. Essentially, the Markov expert provides
the background statistical distribution of symbols
over the sequence. Here we use an order-2 Markov
expert for DNA, and order-1 for protein.

Different regions of a DNA sequence may have
differing functions and thus may have different sym-
bol distributions. Another type of expert is the con-
text Markov expert, whose probability distribution
is not based on the entire history of the sequence
but on a limited preceding context. In other words,
the context Markov expert bases its prediction on
the local statistics. The Markov expert and context
Markov expert are employed to compress a sequence
to compute its information content.

To compress a sequence X on the background
knowledge from some sequence Y , a new type of ex-
pert is employed. XM employs a align expert that
considers the next symbol in X to be part of a con-
served region and aligned with a certain symbol in
the background sequence. After each prediction, the
expert has a chance to review before moving on to
the next symbol. It therefore, can use an adaptive
code [24], over some recent history, to predict the
probability of the next symbol. If the align expert
believes that the current symbol xi is aligned with
the symbol yj , it gives a probability to its predicted
symbol of:

p =
Cxi|yj + 1
Cyj + 4

(2)
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where Cyj is the number of symbol yj the align ex-
pert has seen in Y and Cxi|yj is the number of xi

that aligns to yj . An align expert can proceed for-
ward and backward to handle copy and reverse com-
plement.

2.3 Proposing of Experts

At a position on the sequence, there could be 2|Y |
possible align experts. This is too many to combine
efficiently and anyway, most would be ignored. To
be efficient, the algorithm must use at most a small
number of align experts at any one time. The limit
of experts at a given time is a parameter of the al-
gorithm.

Proposing the best possible experts is similar to
seeding in other alignment methods. There are sev-
eral techniques the XMAligner uses to nominate ex-
perts. The first technique is using a hash table of
hash size k. The hash table suggests every k-mers
match as an align expert. In the second technique,
our algorithm nominates the experts that have the
longest match to symbols preceding the current posi-
tion. It first builds the suffix array of the background
sequence to suggest such experts quickly. We choose
the divsufsort algorithm [25] for constructing the suf-
fix array due to its fast speed and effective memory
requirement.

There are two groups of nucleotides namely
purine (C and T) and pyrimidine (A and G). The
chemical structures of two nucleotides in a group are
more similar than that from the other group. Be-
cause of this, the substitutions changing nucleotides
in a group (transitions) are more common than
substitutions that change the group of nucleotides
(transversions). In order to permit mismatches in
seeds, the XMAligner provides an option to match
nucleotides to that from the same group. From our
experience, performance of matching the group is
significantly better than exact matching.

2.4 Combining Expert Predictions

The core part of the XM algorithm is the evaluation
and combination of expert predictions. Suppose a
panel of experts E is available to the encoder. Ex-
pert θk gives the prediction P (xn+1|θk, x1..n) of sym-
bol xn+1 based on its observations of preceding n
symbols. A sensible way to combine experts’ predic-

tions is based on Bayesian averaging:

P (xn+1|x1..n) =
∑

k∈E

P (xn+1|θk, x1..n)wθk,n

=
∑

k∈E

P (xn+1|θk, x1..n)P (θk|x1..n)

(3)

In other words, the weight wθk,n of expert θk for en-
coding xn+1 is the posterior probability P (θk|x1..n)
of θk after encoding n symbols. wθk,n can be esti-
mated by Bayes’s theorem:

wθk,n = P (θk|x1..n)

=
∏n

i=1 P (xi|θk, x1..i−1)P (θk)∏n
i=1 P (xi|x1..i−1)

(4)

Normalising equation 4 by a common factor M
we have:

wθk,n =
1
M

n∏

i=1

P (xi|θk, x1..i−1)P (θk) (5)

The normalisation factor M , in fact does not
matter as equation 3 could be again normalised to
have

∑
P (xn+1|x1..n) = 1. Take the negative log of

equation 5 and ignore the constant term:

−log2(wθk,n) ∼

−
n∑

i=1

log2P (xi|θk, x1..i−1)− log2P (θk)
(6)

Since −log2P (xi|θk, x1..i−1) is the cost of encod-
ing symbol xi by expert θk, the right hand side of
equation 6 is the length of encoding of subsequence
x1..n by expert θk. As we want to evaluate experts
on a recent history of size w, only the message length
of encoding symbols xn−w+1..n is used to determine
the weights of experts. We rewrite equation 6 as

wθk,n ∝ 2MsgLen(xn−w+1..n|θk)−log2P (θk) (7)

Suppose there are three hypotheses about how a
symbol in sequence X is generated: by the distribu-
tion of the species genome; by the distribution of the
current subsequence; or by copying from sequence
Y . We therefore entertain three experts for these hy-
potheses: (i) a Markov expert for the species genome
distribution, (ii) a context Markov expert for the lo-
cal distribution, and (iii) a repeat expert, which is
the combination of any available align experts, for
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the third hypothesis. The experts’ predictions are
blended as in equations 3 and 7.

If a symbol is part of a conserved region, the align
expert of that region must predict significantly bet-
ter than a general prediction such as that from the
Markov expert. We therefore define a listen thresh-
old, T , to determine the reliability of an align expert.
An align expert is considered reliable if the length
of its encoding of the last w symbols is smaller than
Cmk − T bits where Cmk is the length of encoding
by the Markov expert. T is a parameter of the algo-
rithm.

An align expert is expected to be involved in pre-
diction on a conserved region. Beyond the region, its
prediction becomes random and therefore its perfor-
mance gets worse. If the align expert performance
falls below the threshold, the expert is discarded to
make way for others.

2.5 Identifying Similar Regions

The main idea for our algorithm is that if two se-
quences are related, one would tell something new
and useful about the other, that would not be known
otherwise. If a region Rx in sequence X has some
biological relationship with some region Ry in se-
quence Y , the similarity between Rx and Ry should
be better than random. In other words, the align ex-
pert based on Ry should perform better on Rx than
the Markov experts whose prediction bases purely
on the statistics of sequence X.

As the background sequence Y could be very
long and there could be moderately long matches
just by chance. If an align expert were based on
a random match, it would predict well during the
match; but subsequent predictions would be bad.
If the expert is consulted, the conditional informa-
tion content would not be lower than the information
content produced by the Markov experts. We there-
fore, consider a region conserved if there is an align
expert whose predictions during its lifetime, if com-
bined with the Markov experts predictions, would re-
sult in a lower conditional information content. The
amount of shared information, measured in bits, in-
dicates the similarity of the two regions. The more
information shared, the more similar they are.

With reference to the traditional dynamic pro-
gramming matrix, an align expert proceeds diago-
nally and thus could only find gap-free similar re-
gions. However, there can be more than one align
expert employed at any time. If there are gaps in the

conserved regions, some neighbouring experts would
be proposed. Therefore, the XMAligner can handle
gaps implicitly without any assumptions about gap
scores.

3 Experiment Results

We applied the XMAligner to study the genomes of
four Plasmodium species, namely P. falciparum, P.
knowlesi, P. vivax and P. yoelii. The genomes are
obtained from PlasmoDB release 5.4 (http://www.
plasmodb.org/ common/ downloads/ release-5.4/ ).
Of the four Plasmodium species, P. falciparum and
P. vivax are malaria parasites on human while P.
knowlesi and P. yoelii cause malaria in monkey and
rodent respectively. The nucleotide compositions in
these species’ genomes are very different. The A+T
content in the genome of P. falciparum is as high as
80% and the in coding regions is 76.22% while the
A+T content in the P. vivax genome and P. vivax
coding regions is 57.71% and 53.70% respectively.
The characteristics of these genomes are presented
in table 1. The four genomes have been annotated
for genes but only the genomes of P. falciparum and
P. knowlesi have been assembled.

It is normally hard to compare the quality of
alignment because we do not know what should be
matched and what should not be matched. We can
assume that coding areas are more likely to con-
served so they are expected to be matched. We
therefore evaluated the performance of the XMA-
ligner by comparing the regions detected by XMA-
ligner to the exons annotated in the PlasmoDB. We
compare the accuracy of alignment at nucleotide and
exon levels.

At the nucleotide level, we define true positives
(TP ) as the number of coding nucleotides that are
correctly predicted as coding, true negatives (TN) as
the number of non-coding nucleotides that are cor-
rectly predicted as non-coding, false positives (FP )
as the number of non-coding DNA what are pre-
dicted as coding and false negatives (NF ) as the
number of coding nucleotides that are incorrectly
predicted as non-coding. At this level, we evalu-
ated the alignment with the sensitivity (Snn) and
specificity (Spn) measures as defined by [26]:

Snn =
TP

TP + FN
(8)
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Species Host Genome Size (Mb) %(AT) in Genome AT %(AT) in CDS
P.falciparum Human 23.2 80.63% 76.22%
P.vivax Human 26.9 57.71% 53.70%
P.knowlesi Monkey 23.4 60.79% 69.77%
P.yoelii Rodent 20.1 77.36% 75.22%

Table 1: Plasmodium genomes characteristics.

Algorithm Measurement Pf/Pk Pf/Pv Pf/Pk Pf/ALL Pk/Pf Pk/Pv Pk/Py Pk/ALL
nucmer Snn 0.36 0.24 0.77 0.97 0.26 9.66 0.18 9.71

Spn 47.26 41.43 64.29 58.55 30.51 73.13 31.60 72.41
Sne 2.03 1.91 5.76 6.78 1.43 32.72 1.26 32.92
Spe 49.06 45.05 69.31 64.02 33.85 75.07 36.64 74.17

promer Snn 14.07 13.56 14.25 11.06 15.24 54.47 13.73 52.86
Spn 75.80 76.41 75.88 73.18 71.72 65.72 72.09 65.93
Sne 40.67 39.34 40.72 37.13 40.29 85.51 36.92 84.49
Spe 76.83 77.18 77.13 73.04 73.01 69.00 73.73 69.21

XMAligner Snn 42.61 39.84 51.43 52.08 45.82 90.12 43.13 89.17
Spn 89.85 91.43 88.68 89.35 80.26 64.64 83.92 65.87
Sne 69.95 67.64 76.66 76.62 70.25 95.57 65.32 95.90
Spe 87.52 88.08 90.01 90.49 48.82 72.19 57.29 70.43

Table 2: Sensitivity and Specificity of coding regions detection by promer, nucmer and XMAligner (in
percentage)

Spn =
TP

TP + FP
(9)

It is worth noting that the specificity defined in
equation 9 is not the traditional specificity which is
defined as

Sp =
TN

TN + FP
(10)

As argued by [26], because the frequency of non-
coding nucleotides tends to be much higher than that
of coding nucleotides, TN is much larger than FP
and thus the traditional specificity in equation 10
produces very large non-informative values. There-
fore, the specificity in equation 9, which is usually
referred to as precision in statistics, is more suitable
in evaluation of gene finding programs.

At the exon level, we measured the proportion
of exons detected by the alignment programs. As
a alignment program can find only similar regions,
and similar regions may not make up the whole exon,
we assume that an exon that is correctly detected if
some parts of the exon are detected by the align-
ment program. Likewise, a detected region is cor-
rectly predicted if it overlaps with some exon. As
in [26], we define the sensitivity as the proportion

of actual exons that are correctly detected and the
specificity as the proportion of detected regions that
are in some coding area. Formally they are:

Sne =
Number of Detected Exons

Number of Actual Exons
(11)

Spe =
Number of Correct Regions

Number of Regions
(12)

We aligned each of the assembled genomes, P.
falciparum and P. knowlesi against each of three
other genomes and against the concatenation of the
other three genomes. The similar regions detected
during alignment were compared with the latest an-
notation (version 5.4) from PlasmoDB. We com-
pared our results with that from MUMmer [15],
one of the best performance genome alignment pro-
grams in the literature. The MUMmer package pro-
vides two programs, namely nucmer which attempts
to align the sequences at the nucleotide level, and
promer which translates two sequences to protein
and aligns at the protein level. The promer is gener-
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ally used when the sequences are relatively divergent
which the nucmer is unable to handle. We compared
our results with both programs.

The alignment of these genomes was carried out
on a desktop with duo core 2.66Ghz CPU and 3GB
of memory. We used a hash table of hash key 20
for proposing experts in XMAligner, and used the
default parameters for nucmer and promer. The
alignment of one genome against another genome by
XMAligner took about 40 minutes, and that of one
genome against the other three took about 1 hour.
The running time of promer was shorter, about 4 to 5
minutes for alignment one genome against another,
and 20 minutes to align one genome to the three
other genomes. Nucmer is even faster, it needed
only 1 minute for pairwise alignment and 4 minutes
for aligning one against three genomes.

The sensitivity and specificity of the three pro-
grams are shown in table 2. A column with the
header X/Y shows the performance of the three al-
gorithms when aligning the genome of X against
the genome of Y and a column with header X/ALL
shows that of aligning the genome X against the
other three genomes. The performance of each pro-
gram is shown in four rows for sensitivity at nu-
cleotide level (Snn), specificity at nucleotide level
(Spn), sensitivity at exon level (Sne) and specificity
at exon level (Spn). All values are in percentage.

Among the three programs, the XMAligner is
closest to the annotations from PlasmoDB we ob-
tained. Its sensitivity and specificity at both nu-
cleotide and exon levels are much higher than that
from nucmer and promer, except that promer pro-
duced higher specificity at the exon level when align-
ing the P. knowlesi genome against the P. falci-
parum genome and P. yoelii at the expense of much
lower sensitivity.

The performance of nucmer was very poor with
the sensitivities are less than 1% at the nucleotide
level, and less than 7% at the exon level in most
alignments. The results suggest that the dynamic
programming approach is unable to deal with com-
paring relatively distant sequences. The promer pro-
gram aligns sequences at protein level but is only
able to achieve around 15% sensitivity at the nu-
cleotide level except for the alignment of the P.
knowlesi genome against the P. vivax and against
the other three genomes.

The output of the XMAligner can be integrated
into the DNAPlatform [27] for visualisation. We ap-
plied the XMAligner to perform alignment contig

ctg6843 of the P. vivax genome against the P. falci-
parum genome, and compare the alignment with the
PlasmoDB annotation in the DNAPlatform viewer.
Contig ctg6843 is 589976 bp long. Compressing the
sequence by the Markov experts yields 1.91 bits per
symbol or the total information content of the se-
quence is 1126854.16 bits. Compressing the sequence
on the background of the P. falciparum genome
produces 1.85 bits per symbol or 1091455.60 bits.
In other words, the share information of the con-
tig ctg6843 given the genome of P. falciparum is
1126854.16 − 1091455.60 = 35398.56 bits. The re-
sulting information content and the similar regions
can be viewed from the viewer. Figure 3 shows the
viewing of the alignment. Both the information con-
tent of contig ctg6843 and the conditional content of
that given the genome of P. falciparum are displayed
in the top plot. The bottom plots shows the shared
information of the two sequences. Users can zoom
in and zoom out to view particular areas of inter-
est. The viewer tool is also able to read and display
annotations. Two lines of boxes near the bottom of
the viewer present the annotations from PlasmoDB
and that produced by the XMAligner.

During our experiment, we noticed an area in
contig ctg6843 very similar to a coding region in
the genome of P. falciparum, but it is not yet an-
notated. The region starts at position 491038 and
is about 15000 bp long and the counterpart from
the P. falciparum genome starts at position 6971447.
We tracked down and found that the region in the
P. falciparum genome is a cluster of three genes
MAL7P1.203, MAL7P1.320 and MAL7P1.204. Fig-
ure 3 shows the region in contig ctg6843 in the
viewer. The region is thought to be a synteny re-
gion conserved across malaria species, and contain
some genes [28].

4 Conclusions
We have presented XMAligner, a genome local align-
ment algorithm, based on information theory. Un-
like traditional alignment algorithms which depend
on dynamic programming, our algorithm finds the
similarities if there is some shared information be-
tween two regions. It therefore is able to align se-
quences relatively distant and with different compo-
sitions. We have shown that the XMAligner is able
to align genome sequences with different nucleotide
compositions where a traditional alignment tool is
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Figure 1: Visualisation of aligning contig ctg6843 from the P.vivax genome against the P.
falciparum genome.
Figure 3 shows the view from position 230000 to 250000 of contig ctg6843 from the P.vivax genome. In the

top plot, the purple graph represents the information content of contig ctg6843 and the blue graph
represents the conditional information content of the contig given the P. falciparum genome. In the

bottom plot, the green graph shows the mutual information content of the two sequences. The blue boxes
are the exons annotated obtained from PlasmoDB and red boxes are the similar regions detected by

XMAligner. The dialogue box shows the properties of a region when it is clicked.

unable to perform. The output from the XMAligner
can be integrated into a visualisation tool to aid the
analysis of sequences.
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