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Abstract. Substitution matrices describe the rates of mutating one
character in a biological sequence to another character, and are impor-
tant for many knowledge discovery tasks such as phylogenetic analy-
sis and sequence alignment. Computing substitution matrices for very
long genomic sequences of divergent or even unrelated species requires
sensitive algorithms that can take into account differences in composi-
tion of the sequences. We present a novel algorithm that addresses this
by computing a nucleotide substitution matrix specifically for the two
genomes being aligned. The method is founded on information theory
and in the expectation maximisation framework. The algorithm itera-
tively uses compression to align the sequences and estimates the matrix
from the alignment, and then applies the matrix to find a better align-
ment until convergence. Our method reconstructs, with high accuracy,
the substitution matrix for synthesised data generated from a known
matrix with introduced noise. The model is then successfully applied
to real data for various malaria parasite genomes, which have differing
phylogenetic distances and composition that lessens the effectiveness of
standard statistical analysis techniques.

1 Introduction

Most important tools for mining in biological data such as sequence alignment
and phylogenetics generally rely on a substitution matrix which ideally reflects
the probability of mutating a character in a sequence to another in other se-
quences. Most sequence alignment algorithms attempt to find the optimal match
of sequences where matching scores are derived from a substitution matrix [1, 2].
It is well known that using a reliable substitution matrix significantly improves
the sensitivity of sequence alignment and database search tools [3, 4]. Substi-
tution matrices also provide clues to dating of various evolutionary events and
many molecular evolution mechanisms, and thus are often used in phylogenetic
analysis [5, 6].

Classically, a substitution matrix is empirically selected based on some as-
sumptions about the sequences being analysed. For protein analysis, the PAM
substitution matrices [7] are calculated by observing the differences in related
sequences with a certain ratio of substitution residues. The PAM-n matrix esti-
mates what rate of substitution would be expected if n% of the amino acids had
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changed. On the other hand, the BLOSUMs [3] are derived from segments in a
block with a sequence identity above a certain threshold.

While much research has been done on substitution matrices for protein, lit-
tle attention has been paid to DNA substitution matrices despite the need of
reliable tools for aligning genome size sequences of the next generation sequenc-
ing technology. Since not all DNA substitutions change the encoded amino acids,
looking at the amino acid level only would lose some information. As more than
one codons can code for the same amino acid, and different strains can show
different preferences for codons that encode a given amino acid [8], a generic
PAM or BLOSUM like substitution matrix for nucleotides such as RIBOSUM
[9] can hardly work well on specific DNA sequences.

Work on DNA substitution matrices [10–12] often bases on a substitution
model. Such examples of substitution models are the CJ69 model [13] which as-
sumes all changes among four nucleotides occurring with equal probability and
the K80 model [14] which allows transitions and transversions to occur with dif-
ferent rates. These models are rarely precise in practice. Traditional substitution
matrix derivation methods also depend on sequence alignment, which in turn is
plausible only when a reliable substitution matrix is used.

In this paper, we introduce a novel method to generate DNA substitution ma-
trices for genomic comparative study. The method is based on information theory
foundation [15] and is in expectation maximisation framework. Our method finds
the substitution matrix directly from the data being analysed without having
to make any assumptions. It considers the substitution matrix as parameters to
align sequences and applies an expectation maximisation approach to estimate
the parameters that optimise the alignment score. To the best of our knowledge,
this method is the first to be able to compute specific substitution matrices for
genome size sequences without any assumptions or a prior alignment of the data.
The presented technique could be generalised to other types of data as well.

2 Methods

Information theory directly relates entropy to the transmission of a sequence
under a statistical model of compression. Suppose a sequence X is to be effi-
ciently transmitted over a reliable channel. The sender first compresses X using
a compression model and transmits the encoded message to the receiver, who
decodes the compressed stream using the same model to recover the original mes-
sage. The information content IX of X is the amount of information actually
transmitted, i.e. the length of the encoded message.

Suppose a sequence Y related to X is available to both parties, the sender
needs to transmit only the information of X that is not contained in Y . Since the
receiver also knows Y , X can be recovered correctly. The amount of information
actually transmitted in this case is called conditional information content of X
given Y , denoted as IX|Y . The more related the two sequences are, the more
information the two sequences share, the shorter message is transmitted. The
mutual information of X and Y is defined as the difference between the infor-
mation content and the conditional information content: IX;Y = IX − IX|Y .
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Compression of sequences requires a compression model. To measure the
conditional information content of one sequence given another, the compression
model needs to use a substitution matrix as parameters. In light of the Minimum
Message Length principle [16, 17], we propose an expectation-maximisation (EM)
algorithm to find the substitution matrix that can produce the most compact
encoding of the two sequences. In the E-step, one sequence is compressed on
the background knowledge of the other to measure the conditional information
content. The compression uses a substitution matrix, initialised to some default
values, as the parameters to be estimated. We use the expert model [18] as the
compression model because of its efficient performance and its ability to produce
an local alignment of the two sequences [19]. In the M-step, the substitution
matrix is then re-estimated based on the mutations observed from the local
alignment. The EM process continues until the conditional information content
obtained converges to an optimal value.

2.1 The Expert Model

The expert model algorithm [18] compresses a sequence X, symbol by symbol
by forming the probability distribution of each symbol and then using a primary
compression scheme to encode it. The probability distribution at a position is
based on all symbols seen previously. Correspondingly, the decoder, having seen
all previous decoded symbols, is able to compute the identical probability dis-
tribution and thus can recover the symbol. The information content of symbol
xi is computed as the negative log of the probability of the symbol [15]:

I(i) = −logPr(xi) (1)

The algorithm maintains a set of experts to estimate the probability of a
symbol. An expert is any entity that can provide a probability distribution of
the symbol. An example is the Markov expert of order k which uses a Markov
model learnt from the statistics of X to give the probability of a symbol given
k preceding symbols. If a related sequence Y is available, the expert model
employs align experts each of which considers the next symbol xi in X to be
part of a homologous region and align with a symbol yj in Y . The align experts
assume a substitution matrix P the entry P (x, y) of which is the probability
of substituting symbol y in Y by symbol x in X. The probability of symbol xi

predicted by an align expert is Pr(xi|yj) = P (xi, yj). The expert model uses
a hash table to propose align expert candidates. A hash table of hash size h
suggests every matching h-mer as an align expert which is then evaluated and
is discarded if it does not perform significantly better than the Markov expert.

The core part of the expert model is the combination of expert predictions.
Suppose a panel of experts E is available to the encoder. Expert θk gives the pre-
diction Pr(xm+1|θk, x1..m) of symbol xm+1 based on its observations of preceding
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m symbols. Expert predictions are combined based on Bayesian averaging:

Pr(xm+1|x1..m) =
∑

k∈E

Pr(xm+1|θk, x1..m)wθk,m

=
∑

k∈E

Pr(xm+1|θk, x1..m)Pr(θk|x1..m)
(2)

The weight wθk,m of expert θk for encoding xm+1 is assigned to Pr(θk|x1..m)
and can be estimated by Bayes’s theorem:

wθk,m = Pr(θk|x1..m) =
∏m

i=1 Pr(xi|θk, x1..i−1)Pr(θk)∏m
i=1 Pr(xi|x1..i−1)

(3)

where Pr(θk) is the prior probability of expert θk before encoding any symbol.
As Eq. 2 can be normalised to have

∑
Pr(xm+1|x1..m) = 1, we can ignore the

common denominator in Eq. 3 and take the negative log of the numerators:

−log2(wθk,m) ∝ −
m∑

i=1

log2Pr(xi|θk, x1..i−1)− log2Pr(θk) (4)

Since −log2Pr(xi|θk, x1..i−1) is the cost of encoding symbol xi by expert
θk, the right hand side of Eq. 4 represents the length of encoding subsequence
x1..m by expert θk. As experts are evaluated on a recent history of w symbols,
the message length of encoding xm−w+1..m is used to determine the weights of
experts. Rewriting Eq. 4 for the weight of expert θk at position m + 1 gives:

wθk,m ∝ 2MsgLen(xm−w+1..m|θk)−log2Pr(θk) (5)

Using only the Markov expert can produce the information content of se-
quence X. The conditional content of X given Y is obtained by combining the
Markov expert with align experts. Align experts are first combined according
to Eq. 5 to become the blended align expert, whose prediction is then combined
with the Markov expert’s prediction. The experts’ weights specified in Eq. 5
involves the prior probability Pr(θk) of each expert. As all align experts are pro-
posed by the same hash table, they have the same prior probability and hence
the common factor 2−log2Pr(θk) can be ignored. However, for combination of the
blended align expert and the Markov expert, their prior probabilities have to
be specified. The prior probability of the blended align expert can be estimated
from previous iterations of the EM process.

An align expert might be proposed simply by chance. The algorithm consid-
ers an align expert plausible if it performs significantly better than the Markov
expert. It must encode the last w symbols better than the Markov expert by
a threshold T bits, which is a parameter of the algorithm. When the align ex-
pert predicts beyond its homologous region, its performance worsens and it is
discarded subsequently. Each align expert suggests an alignment of the region
starting at the position it is proposed and ending at the position it is discarded.
This region is called the maximum-scoring segment pair (MSP). The set of MSPs
forms an local alignment of the two sequences.
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2.2 Alignment Score and Mutual Information Content

Consider an align expert that uses a substitution matrix P and aligns xi in X
to yj in Y . The alignment score is specified by the logarithm of the odds ratio
of model H which assumes homology, and model R assuming random[20]:

S(xi, yj) = log2
Pr(xi, yj |H)
Pr(xi, yj |R)

= log2
Pr(xi, yj |H)
Pr(xi)Pr(yj)

(6)

By Bayes’s theorem, the numerator of the right hand side can be expressed as:

Pr(xi, yj |H) = Pr(xi|yj , H)Pr(yj) = P (xi, yj)Pr(yj) (7)

Therefore,

S(xi, yj) = log2
P (xi, yj)Pr(yj)
Pr(xi)Pr(yj)

= log2P (xi, yj)− log2Pr(xi) (8)

The alignment score of a MSP is the sum of alignment scores of all symbols
in the region. If the MSP is from two regions starting at xm and yn respectively
and is k symbols long, its alignment score is

S(xm, yn, k) =
k−1∑

i=0

−log2Pr(xm+i)−
k−1∑

i=0

−log2Pr(xm+i, yn+i) (9)

The two terms are the lengths of the compressed messages of the region xm,k

by the Markov expert and by the align expert, respectively. In other words, the
alignment score of a MSP is the mutual information content of the two regions.

2.3 Computing the Substitution Matrix

Once the local alignment of the two sequences is constructed, the substitution
matrix is computed from the substitutions observed from the alignment. Entry
P (x, y) of the substitution matrix gets the value

P (x, y) =
Cx|y
Cy

(10)

where Cx|y is the number of symbol x in X that are aligned to symbol y in Y ,
and Cy is the number of symbol y in all MSPs.

A statistical hypothesis testing is performed to select the “good” MSPs to
compute the substitution matrix. From Karlin-Altschul statistics [21], the E-
value of occurrences of MSPs with a score S or greater is E = KMN2−S where
M and N are the lengths of the two sequences and K is the Karlin-Altschul
parameter. The occurrences of MSPs can be modelled by a Poisson process with
characteristic parameter E. At the significance level α = 0.05, the substitution
matrix is estimated from mutations in MSPs having E-value 6 α or a score:

S > −log2
α

KMN
(11)
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3 Experiment Results

We implemented the algorithm in Java and ran experiments on a PC with Intel
Core 2 Duo 2.33Ghz CPU and 8GB of RAM, using Sun Java runtime environ-
ment 1.5. In our experiments, we used a hash table with hash key of 20 to propose
align experts. The threshold T was set to 0.5 bits. The initial substitution matrix
is set to have entries of 0.7 on the diagonal and 0.1 off the diagonal.

It is hard to verify substitution matrices derived from real data. We therefore
performed experiments on a set of synthesised data so that the substitution
matrix computed can be compared with the matrix used to generate data. The
experiment is described in Subsection 3.1. We then ran experiments on a set of
real data, as described in Subsection 3.2.

3.1 Experiment on Synthesised Data

Synthesised data was used to ensure the correct derivation of substitution ma-
trices. The benefit of using artificial data is that the data can be generated with
added noise from a known substitution matrix, and hence the computed matrix
can be verified. We generated two “model genomes” each of which is one million
bases long. About 10% of the first genome is “coding regions” which are copied
to the second genome with substitution rates specified by a matrix Ptarget. The
“non-coding regions” of the two genomes are independent on each other.

Table 1. The target and computed substitution matrices in the synthesised data ex-
periment

Ptarget =

˛̨
˛̨
˛̨
˛

.600 .050 .300 .050

.030 .650 .070 .250

.300 .040 .600 .060

.050 .300 .050 .600

˛̨
˛̨
˛̨
˛

Pcomputed =

˛̨
˛̨
˛̨
˛

.596 .051 .300 .052

.029 .652 .009 .250

.299 .041 .599 .061

.052 .299 .050 .598

˛̨
˛̨
˛̨
˛

The substitution matrix is reconstructed from the data by aligning the sec-
ond genome against the first one. After the fifth iteration the changes to the
matrix between two consecutive iterations were negligible. In other words, the
matrix converges after 5 iterations and in less than 10 minutes. Table 1 presents
the target matrix Ptarget and the computed matrix Pcomputed whose rows and
columns are in ACTG order. Given the noise introduced during the generation of
the two sequences, the similarity of the computed matrix and the target matrix
shows the effectiveness of our algorithm.

3.2 Experiment on Plasmodium Genomes

We analysed the genomes of four Plasmodium species, namely P. falciparum,
P. knowlesi, P. vivax and P. yoelii which cause malaria in various hosts. The
genomes are obtained from PlasmoDB release 5.4 (http: // www. plasmodb.
org/ common/ downloads/ release-5. 4/ ). The nucleotide compositions in these
species’ genomes are very different. The AT content in the genome of P. falci-
parum is as high as 80% and in coding regions is 76.22% while the AT content
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Table 2. Plasmodium genomes characteristics.

Species Host Genome Size (Mb) %(AT) in Genome AT %(AT) in CDS

P.falciparum Human 23.2 80.63% 76.22%
P.vivax Human 26.9 57.71% 53.70%
P.knowlesi Monkey 23.4 60.79% 69.77%
P.yoelii Rodent 20.1 77.36% 75.22%

Table 3. The substitution matrices of different malaria genomes

PPf−Pk =

˛̨
˛̨
˛̨
˛

.701 .074 .144 .081

.107 .707 .054 .131

.184 .066 .642 .108

.089 .156 .075 .680

˛̨
˛̨
˛̨
˛

PPk−Pf =

˛̨
˛̨
˛̨
˛

.779 .040 .081 .100

.137 .372 .057 .436

.419 .060 .381 .140

.103 .083 .040 .774

˛̨
˛̨
˛̨
˛

PPf−Pv =

˛̨
˛̨
˛̨
˛

.613 .086 .227 .074

.085 .705 .077 .133

.146 .084 .687 .083

.073 .233 .086 .608

˛̨
˛̨
˛̨
˛

PPv−Pf =

˛̨
˛̨
˛̨
˛

.797 .039 .069 .095

.136 .386 .049 .429

.428 .053 .378 .141

.095 .072 .037 .796

˛̨
˛̨
˛̨
˛

PPf−Py =

˛̨
˛̨
˛̨
˛

.762 .041 .084 .113

.112 .613 .059 .216

.226 .059 .603 .112

.115 .082 .040 .763

˛̨
˛̨
˛̨
˛

PPy−Pf =

˛̨
˛̨
˛̨
˛

.765 .041 .082 .112

.114 .567 .059 .260

.236 .057 .593 .113

.112 .080 .043 .765

˛̨
˛̨
˛̨
˛

PPk−Pv =

˛̨
˛̨
˛̨
˛

.741 .063 .145 .051

.060 .754 .076 .110

.101 .072 .757 .060

.052 .142 .065 .741

˛̨
˛̨
˛̨
˛

PPv−Pk =

˛̨
˛̨
˛̨
˛

.808 .050 .083 .059

.091 .677 .061 .171

.200 .067 .641 .092

.063 .084 .050 .803

˛̨
˛̨
˛̨
˛

PPk−Py =

˛̨
˛̨
˛̨
˛

.796 .036 .068 .100

.140 .451 .051 .358

.357 .051 .450 .142

.101 .068 .036 .795

˛̨
˛̨
˛̨
˛

PPy−Pk =

˛̨
˛̨
˛̨
˛

.687 .075 .146 .092

.107 .577 .066 .250

.121 .048 .726 .105

.073 .124 .074 .729

˛̨
˛̨
˛̨
˛

PPy−Pv =

˛̨
˛̨
˛̨
˛

.630 .086 .212 .072

.081 .696 .077 .146

.134 .069 .715 .082

.071 .208 .085 .636

˛̨
˛̨
˛̨
˛

PPv−Py =

˛̨
˛̨
˛̨
˛

.822 .034 .056 .088

.146 .444 .046 .364

.363 .047 .442 .148

.088 .057 .033 .822

˛̨
˛̨
˛̨
˛

in the P. vivax genome and P. vivax coding regions is 57.71% and 53.70% re-
spectively. The characteristics of these genomes are presented in table 2.

We applied our method to find the substitution matrix for each pair of these
genomes. To compute the substitution matrix PY−X of genome Y to genome
X, we compressed the genome X on the background knowledge of genome Y .
Generally, about 4 or 5 iterations were required for convergence. The substitution
matrices of these genomes are presented in Table 3.

4 Conclusions

We have presented a method for dynamically deriving optimal substitution ma-
trices for analysis of long DNA sequences. The method is based on the sound
theoretical foundation from information theory. We have shown that the method
successfully regains the substitution matrix from synthesised data derived from
a known matrix with introduced noise. The method has also been applied on
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real data with differing phylogenetic distances and nucleotide composition which
would mislead classical statistical methods. Unlike traditional methods, our al-
gorithm does not rely on the pre-alignment of sequences or on a substitution
model. It incorporates the alignment of sequences and the substitution matrix
computed in a expectation maximisation process. Furthermore, it can handle
very long sequences in practical running time. The method therefore, would
facilitate knowledge discovery in large and statistical biased databases.
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