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Abstract. Inductive programming is a new machine learning paradigm
combining functional programming (FP) for writing statistical mod-
els and the information theoretic criterion, Minimum Message Length
(MML), to prevent overfitting. Type-classes specify general properties
that statistical models must have. Many statistical models, estimators
and operators have polymorphic types. Useful operators transform and
combine models, and estimators, to form new ones. FP’s compositional
style of programming is a great advantage in this domain. MML fits well
with FP in providing a compositional measure of the complexity of a
model from its parts.

Inductive programming is illustrated by a case study of Bayesian net-
works. Networks are built from classification- (decision-) trees. Trees,
and networks, are general [4] as a natural consequence of the method.
Discrete and continuous variables, and missing values are handled. Trees
are built from partitioning functions and models on dataspaces. Finally
the Bayesian networks are applied to a challenging data set on lost per-
sons.
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1 Introduction

The paper describes inductive programming (IP) a paradigm for quickly writing
succinct solutions to inductive inference problems from machine learning. Solu-
tions take the form of statistical models and their estimators: Given particular,
invariably noisy, data infer a general model of the data. IP uses functional pro-
gramming (FP) to program models and estimators, and the information theoretic
criterion, minimum message length (MML), to prevent over-fitting.

Much research in machine learning involves devising a new kind of statistical
model and implementing a program to learn (infer, fit, estimate) a model given
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data. Such stand-alone programs are often hard to modify and combine with
others to implement new statistical models. To address this, IP defines types and
classes of statistical models and the properties that instances, that is particular
models, must have and provides a library of such instances.

Given the huge variety of computing problems, the chances of having a ready-
made program that already solves a new problem is small. The situation is no
different in inductive inference so it is useful to have a way of creating new solu-
tions quickly and easily. Programming languages exist to make it easier to write
new solutions. One could devise a special purpose language for inductive infer-
ence, and examples can be found, sometimes as a “scripting” language distinct
from the “implementation” language in a data analysis platform such as R [25]
and S-Plus [11]. But such a language is often interpreted and lacks compile-time
type checking, and it is rarely maintained by programming language “profes-
sionals” who ensure that it grows and develops. Instead IP uses an existing
general purpose FP language that is compiled and has a strong type system —
Haskell [17]. Haskell is a good choice [5] for inductive inference because it is
expressive and has a powerful system of polymorphic types and type classes; it
is good language technology. FP encourages the composition of functions, and
polymorphic types lead to general solutions; this all makes for short and general
programs. We see these benefits rubbing-off on statistical models when they are
transformed and composed.

Previous work on IP [2,1,4,3,5] created basic but useful statistical models,
estimators and functions. This paper shows how they can be tailored quickly
to suit a new problem and used as parts of a new model. Many models and
associated functions are polymorphic; a good type and class system reveals their
true generality. Statistical models, functions and data can be very general —
any computable model inferred from almost any type of data by an arbitrary
algorithm.

Over-fitting is a well known problem in machine learning and it is essen-
tial that a machine learning system do something about it. William of Occam
argued in medieval times that an explanation should be kept simple unless ne-
cessity dictates otherwise. A computer program doing inductive inference must
address model complexity. In particular, if sub-models are to be composed to
make new models, the complexity of the parts and the whole must be dealt with.
With its compositional nature, minimum message length (MML) (section 2.1)
inference [27,26] is a natural partner for FP in this domain.

The questions that are raised, and that are being answered as IP develops,
include: what are the types and classes of statistical models, what can be done
to models, and how can they be transformed and combined? Depending on one’s
background and inclination, IP can be seen as a software engineering analysis
of machine learning, as a compositional denotational semantics of statistical
models, as an application of FP, or as an embedded language [24].

The next section covers some background material. After that, inductive
programming (IP) is illustrated by a case study of Bayesian networks. Bayesian
networks are then applied to a data set of lost persons [15]. It is a challenging
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data set of 363 records and 15 variables, half of them missing on average. It
shows the kind of problem that typically pops up with real data, if any data
set can be said to be typical. Bayesian networks [4] form a case study; the main
point of the paper is to show how a new statistical model can be programmed
quickly to suit a new problem. All code shown is Haskell-98 in the interests of
standardisation and has been compiled under the Glasgow Haskell Compiler,
ghce, version 6.0.1.

M; DM
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A

Fig. 1. Message Paradigm.

2 Background

For completeness, this section introduces MML and IP’s main classes [2, 3, 5].

2.1 MML

Minimum message length (MML) inference [27,26] builds on Shannon’s math-
ematical theory of communication [19], hence ‘message’, and on Bayes’s theo-
rem [7]:

Pr(M&D) = Pr(M).Pr(D|M) = Pr(D).Pr(M|D)
msglen(E) = -log(Pr(E))
msglen(M&D) = msglLen(M)+msglen(D|M) = msglen(D)+msgLen(M|D)

where M is a model (theory, hypothesis, parameter estimate) of prior probability
Pr(M) over some data, D, and E is an event of probability Pr(E). MsgLen(E)
is the length of a message, in an optimal code, announcing E; the units are nits
for natural logs, bits for base 2 logs.

MML notionally considers a transmitter sending a two-part message to a
receiver (figure 1). The first part, of length msgLen(M), states a model which is
an answer to some inference problem. The second part, msgLen(D|M), states the
data encoded as if the answer, M, is true; note that the receiver cannot decode the
second part without the first part. There is a trade-off between the complexity
of the model, M, and its fit to the data, D|M. In some simple cases MML is
equivalent to maximum aposteriori (MAP) estimation but this is not true in
general [28,12]; for example if one or more continuous parameters are involved
they must be stated to finite, optimal precision. Strict MML (SMML) relies on
the design of a full optimal code book. Unfortunately SMML is infeasible for



4 Lloyd Allison

most inference problems [12,26]. Fortunately there are efficient, accurate MML
approximations [28,26] for many useful problems and models.

MML is a compositional criterion because the complexity of data, models and
sub-models are all measured in the same units: “[It is possible] to use [message]
length to select among competing sub-theories at some low level of abstraction,
which in turn can form the basis (i.e., the ‘data’) for theories at a higher level of
abstraction. There is no guarantee that such an approach will lead to the best
global theory, but it is reasonable to expect in most natural domains that the
resulting global theory will at least be near-optimal” [29,14]. MML’s composi-
tional nature is a good fit with functional programming’s compositional style
of programming. This is illustrated in the Bayesian network case study of sec-
tion 3. MML has been used to assess the complexity of some specific kinds of
combined models (e.g. [14, 6, 18]) but its general programming potential has only
recently started to be studied [2,4, 5]. A functional language with a parametric
polymorphic type system is a sound foundation for such a study.

class ... SuperModel sMdl where
prior :: sMdl -> Probability
msgl :: sMdl -> MessagelLength
mixture :: ... mx sMdl -> sMdl

class Model mdl where

pr :: (mdl dataSpace) -> dataSpace -> Probability
nlPr :: (mdl dataSpace) -> dataSpace -> MessageLength
msg :: ... (mdl dataSpace) -> [dataSpace] -> MessagelLength

msg2 :: (mdl dataSpace) -> [dataSpace] -> MessagelLength

class FunctionModel fm where
condModel :: (fm inSpace opSpace) -> inSpace -> ModelType opSpace

class TimeSeries tsm where
predictors :: (tsm dataSpace) -> [dataSpace]l -> [ModelType dataSpacel

¢...” stands for omitted details, ‘::’ for ‘has type’,

‘[t]’ for ‘list of a type t’, and ‘->’ for function type.

Fig. 2. Classes of Statistical Model.

2.2 Types and Classes of Statistical Models

We want to be able to program as large as possible a set of things that people
call statistical models, i.e. that assign probabilities to data, and yet have the set
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clean, orthogonal and built on a small foundation. For simplicity, we also want a
small set of just their essential properties. Haskell type classes (figures 2 and 3)
were previously defined [2, 5] for basic models (distributions), function-models
(regressions) and time-series models; the last are not used here. A basic Model,
mdl, can return the probability, pr, and the negative log probability, n1Pr, of a
datum from its data-space. It can also compute the second-part, msg2, and the
total message length, msg, for a data set. We are only concerned with its most
important properties here; a statistical model might be able to do other things.

A function-model has an input-space (exogenous variables) and an output
space (endogenous variables). Its principal ability is to return a model of its
output space conditional, condModel, on a value from the input space.

A super-class, SuperModel, states that an instance of one of the various sub-
classes must return its own prior probability and message length, msg1, and that
it must be able to form mixtures; it must also be in class Show so that we can
see the answers to inference problems.

Super-
—Model

A
/

Time- | "~ | Model | " | Function—

—Series ‘\// —Model

Fig. 3. Classes and Conversions.

Types are provided for models to be built in standard ways: Type ModelType
is an instance of type-class Model, and types FunctionModelType and CTreeType
(classification tree type) are instances of type-class FunctionModel.

Operators are defined to implement familiar laws of probability. For exam-
ple, assuming that variables over the data-spaces ds1 and ds2 are independent,
bivariate m1 m2 forms a model of the product data-space, (ds1, ds2), from
m1, a model of ds1, and m2, a model of ds2. For the case where ds2 is condition-
ally dependent on ds1, condition m1 fm forms a model of (ds1, ds2), from a
model of ds1 and a function-model, fm, from ds1 to ds2. There are correspond-
ing operators on estimators — estBivariate, estCondition and so on. Many of
these operators are polymorphic in that their types contain type variables such
as ds1 and ds2.



6 Lloyd Allison

Useful statistical models, including multi-state, normal and multivariate dis-
tributions, mixture models, Markov models, finite function-models (conditional
probability tables) and classification trees, have been defined and made instances
of the appropriate classes, and conversion functions (figure 3) defined on them [2,
5]. Below, these building blocks are extended, tested and used in a case study of
Bayesian networks to explore and illustrate IP.

3 Case-Study: Bayesian Networks

A Bayesian network [16] is a good tool to investigate relationships among the
variables of a data set. A Bayesian network is a directed acyclic graph (DAG). A
node represents a variable. An edge represents a (direct) conditional dependence
of a child on a parent and, in a suitable context, has a causal interpretation.
Figure 4 shows a small example network [4] in which variable @2 is a child of
variables @0 and @1, and is a parent of variable @4; variable @3 is independent
of the other variables. It happens that variables Q0 and @4 are continuous and
that @1, @2 and @3 are discrete.

Creating and applying an estimator for Bayesian networks [4] forms our case
study to illustrate IP. A Bayesian network is in class Model (section 2.2) and
can assign a probability to a data tuple; belief updating has not yet been imple-
mented.

Friedman and Goldszmidt [13] first suggested using classification-trees (deci-
sion trees), in place of the full conditional probability tables (CPTs) often used
within the nodes of Bayesian networks. Comley and Dowe [9] have also used trees
within the nodes of networks. A classification tree can “become” a full CPT in
the limit but can be much more economical, that is less complex, in many cases.
It happens that previous work included a general classification tree algorithm [2,
1,3, 5]. The classification tree type is an instance of function-model. A tree can
test discrete and continuous variables from its input space and can have discrete
or continuous distributions, or even function-models (regressions), in the leaves.
It is reused as the basis of our general Bayesian networks [4]; also see section 3.7.
Each classification tree consists of at least one leaf-node, CTleaf, and possibly
also fork-nodes, CTfork. These leaf- and fork-nodes are not to be confused with
network nodes; there is one tree per network node. The classification tree type
is an instance of the class FunctionModel. A fork tests a parent (input) variable
value. A leaf models the appropriate child (output) variable. The multi-state
distribution, mState, models a discrete variable, and the normal distribution
models a continuous variable; other distributions can be used if necessary be-
cause the tree estimator is parameterised by the leaf estimator. MML gives a
trade-off between the complexity of a tree and its fit to the data which is used
to control the search. Note that one or more tests on a parent variable in a tree
indicate a parent-child dependency, an edge, at the network level.

The following sections describe the application of Bayesian networks to lost
person data. As an example of IP we see the composition of statistical mod-
els: Multi-state and normal distributions within models of missing data within
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Fig. 4. Example Bayesian Network.

classification trees within a Bayesian network. Some new generic features were
required to handle this data set. Any of those features may exist in some other
data analysis platform, perhaps this is true of all of them, but it is unlikely that
they all exist in the same platform, and unlikely that such a platform could be
as easily adapted to further new features. It often seems that every data set has
its own oddities as one gets to know it.

3.1 Application of Bayesian Networks: Lost Person

Koester’s [15] lost person data set has been studied in CSSE, Monash [22,23].
There are 363 records, and 15 variables, numbered 0-14; half of the values are
missing on average. Attention is sometimes restricted to the first eight variables;
one aim is to predict distance travelled, DistIPP variable 7, from variables zero
to six.

3.2 Describing the Data

The first step is to define the variable types in the lost person data set; in Haskell
this is:

data Tipe = Alzheimers| Child| Despondentl|
Hiker| Other| Retarded| Psychotic deriving ...
type Age = Double
data Race = ...
data Gender = ...
data Topography = Mountains| Piedmont| Tidewater deriving (Ord, Enum,...)

data Urban = Rural | Suburban | Urban deriving (Ord, Enum, ...)
type HrsNt = Double -- hours notified
type DistIPP = Double -- distance

type MissingPerson = (Maybe Tipe, Maybe Age, ...)

‘deriving’ directs the compiler to add a new data type to standard Haskell
classes such as Ord (ordered) and Enum (enumerated). Missing values are an
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issue and are represented by Maybe t where Maybe t = Nothing | Just t is
a standard Haskell type with parameter t; see section 3.6. Haskell’s standard
Prelude [17] instantiates tuples, up to 7-tuples, in classes Read and Show, so the
15-tuples here need to be made instances of those classes for input and output
respectively. This is an easy, if tedious, job and could be automated in one of
the Haskell extensions such as template Haskell [20], say.

3.3 Partitioning Data Spaces: Class Splits

A classification tree, as used in a network node, operates by splitting, that is par-
titioning, a data set from its input space by tests on input variables; a Splitter
partitions a data set. In this way the data are directed into subtrees and even-
tually into leaves where the output variable(s) can be well modelled. Function
splits of class Splits [2,1] proposes, in order of decreasing prior probability,
Splitters for use by the classification tree estimator, estCTree.

class Splits ds where splits :: [ds] -> [Splitter ds]

The current tree estimator [2, 1] uses a simple zero-lookahead algorithm in the
search to balance tree complexity (msgl) against fit to the data (msg2). A contin-
uous, ordered (0rd), variable, such as Age, is split on being < or > some value;
by default splits0Ord proposes values as follows: Median, quartiles, octiles, and
so on [30]. A discrete, i.e. Bounded, enumerated (Enum), variable, such as Gender,
of a k-valued type is conventionally split into k parts, as defined in the obvious
way by function splitsBE. However Topography and Urban are instances of the
standard Haskell classes Bounded, Enum (enumerated) and Ord (ordered), so we
also have the options of splitting each of them into two parts on the basis of
order, as covered by splitsOrd:

instance Splits Tipe where splits = splitsBE
instance Splits Topography where splits = splitsBE --or splitsOrd
instance Splits Urban where splits = splitsBE --or splitsOrd

Yet another option was implemented and tested: Tipe has seven values and
high-arity discrete types like Tipe can cause function-models difficulties because
of the large number of options and the few data in some or all of them. If some
options are thought to behave in similar ways then, rather than using splitsBE,
values can be grouped into nominated sub-sets (and their complement) accord-
ingly. This only affects splitting on Tipe, not modelling of it. A function to
implement this setSplits option is just five lines.

setSplits sets [] = []
setSplits sets xs =
let y:ys = map (memberships sets) xs
in if all ((==) y) ys then []
else [setSplitter sets]
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instance Splits Tipe where
splits = setSplits [[Alzheimers],[Child]] -- e.g.

If ‘k’ subsets are specified, their complement is taken to be the (k+1)st. Note
that the programmer decides how to group the values in Tipe. In principle a
function could cost and search through the grouping possibilities but this would,
of course, increase the overall search time.

3.4 Modelling the Variables

The question of which distribution, and therefore which estimator, to use for
each variable now arises. The standard estimator for the normal (Gaussian) dis-
tribution uses a uniform prior on the mean and an inverse prior on the standard
deviation and requires their ranges, and also the data measurement accuracy.
Note, the multi-state distribution and its estimator are polymorphic.

e0 = (estModelMaybe estMultiState) -- Tipe
el = (estModelMaybe (estNormal O 90 1 70 0.5)) -- Age

Function estModelMaybe was quickly created to allow for missing values in a
variable; it is discussed in section 3.6.

Finally the individual estimators are assembled into estMissingPerson, a
composite that matches a data tuple.

estMissingPerson =
estVariatelb e0 el e2 e3 e4 eb eb e7 e8 e9 el0 ell el2 el3 eld

Function estVariatel5 estimates a 15-variate probability distribution which is
an instance of class Project — a piece of inductive inference machinery described
next.

3.5 Selecting Sub-Spaces: Projections

In a typical application of a classification tree [2] the input variables and the
output variable (usually singular) are fixed. But here, in a Bayesian network [4],
the selection of parent (input) and child (output) variables must be under pro-
gram control. Class Project, as in projection, was created for this purpose. Some
such mechanism is needed for heterogeneous variable types in a strongly typed
language; the network estimator does not “care” what types the data and sub-
estimators have provided that they agree. An instance, t, of class Project is
some multi-dimensional type for which a list of Boolean flags can be used to re-
strict t’s activities to certain selected dimensions. The non-selected dimensions
behave in a trivial, identity manner, that is appropriate to type t — if they are
ever called upon. In the case of a Model this is to return a message length of
zero for non-selected variables, that is they are taken to be already known, or
to be of no interest.
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class Project t where
select :: [Bool]l] -> t -> t

As discussed in section 3.3, class Splits exists for partitioning data — dis-
crete, continuous or multi-variate. A class Splits2, inspired by Project, was
defined (it could perhaps be folded into class Splits) to allow splitting on se-
lected variables:

class Splits2 t where
splitSelect :: [Bool]l -> [t] -> [Splitter t]

The situation for adding k-ary types to class Project, or k-tuples to Splits2,
is similar to that for k-tuples with respect to classes Read and Show as discussed
in section (3.2).

3.6 Handling Missing Data

The lost person data set is challenging in having many missing values. Most
data have at least one missing value, and some have several. Every variable is
missing in some datum. Haskell has the ideal type to represent possibly missing
values: Maybe. New operators were needed to extend arbitrary statistical models
to cover possibly missing values. Rather than imputing (replacing) missing values
the phenomenon is built into our model.

Function modelMaybe m1 m2 might be called a “high-order” function on mod-
els. because it acts on models which are, if not literally functions, principally
made up of them. It turns an arbitrary model, m2, of non-missing data of type t
into the corresponding model of Maybe t. It requires a model, m1, of Bool, for
whether the data is present (True) or missing (False).

modelMaybe ml m2 =

let

neglogPr (Just x) (n1Pr ml True) + (nlPr m2 x)

neglogPr Nothing nlPr ml False

in MnlPr (msgl ml + msgl m2) neglogPr ...show method omitted

Mn1Pr is a constructor for a type in class Model (section 2.2); it takes a message
length, a negative log likelihood function, and a description which shows the
model.

The related function, estModelMaybe acts on estimators; it turns an estima-
tor of non-missing data into the corresponding estimator where the data may
include missing values:

estModelMaybe estModel dataSet =
let present (Just _) = True
present Nothing = False
ml = uniformModelOfBool
m2 = estModel (map (\(Just x)->x) (filter present dataSet))
in modelMaybe ml m2
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In the present application the missing-ness of values is certainly non-random
for some variables, for example Age is often unrecorded for cases of Hiker: : Tipe.
However, we are not interested in modelling missing-ness so a fixed unbiased
model, m1, is used above to “predict” missing (Nothing) or present (Just...).
The following definition can be used if it is necessary to estimate missing-ness:

ml = estMultiState (map present dataSet)

Missing values also affect splits, that is partitions of the data (section 3.3).
A simple strategy is for the variable to be split as for the underlying type but
with an extra option for missing (Nothing) cases:

maybeSplitter (Splitter n f d) =
let £’ Nothing =n

£’ (Just x) = f x -- Just x, as x was, O..n-1
in Splitter (n+1) £’ ...show method omitted

Other strategies, not examined here, could try to predict in various ways what
the missing value, or its distribution, really is and act on that. There are a
great many possibilities and, this being an example, we just give one reasonable,
simple approach.

3.7 Mixed Bayesian Networks and the Lost Person Network

The function, estNetwork, for inferring a Bayesian network is given a permu-
tation, a total ordering, of the selected variables that are to be considered; a
variable may be dependent on none, some or all of the variables preceding it in
the permutation. The use of total or partial orders on variables is not uncommon
in network learners [16]. It would be possible to search over permutations, heuris-
tically if there were many variables, and MML does suggest various heuristics.
However the present application itself suggests likely orderings of the variables,
the simple algorithm accepts one of these and that permutation is currently
taken to be common knowledge:

estNetwork perm estMissingPerson dataSet =
let n = (length . selAll) (estMV [])
search _ [] = [ -- done
search ps (c:cs) = -- parents ps, children c:cs
let opFlag = ints2flags [c] n --identify child
ipFlags = ints2flags ps n --possible parents
cTree = estCTree (estAndSelect estMV opFlag)
(splitSelect ipFlags)
dataSet dataSet
in cTree : (search (c:ps) cs)

trees = search [] perm
msglen = sum (map msgl trees) -- total msgl
nlP datum =

sum (map (\t -> condN1Pr t datum datum) trees)
in MnlPr msglen nlP (\() -> "Net:"++(show trees))
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Internally estNetwork uses the estimator for classification trees [2, 5], estCTree,
to do much of the work. The remainder consists of organising selector flags
corresponding to allowed parents for the child in the current node. Note that
the dataSet seems to be passed to estCTree twice — as both input and output
variables, but straightforward auxiliary functions ints2flags, estAndSelect
and splitSelect, use the flags to cause the child (output) to be predicted by
the estimator and the parents (input) to be split on as appropriate at each node
in the network.

o

Fig. 5. Lost Person Network 1 (see 3.2, 3.7 for details).

For lost persons, variables 1 to 3, Age, Race and Gender cannot, in a causal
sense, depend on other variables and should come first, in some arbitrary order,
say [1,2,3]. Tipe possibly depends on them, for example there are few young
Alzheimers cases. Topography and Urban can sensibly come next, and one ex-
pects a relationship between them. That leaves HrsNt and finally DistIPP to
make up a plausible ordering, [1, 2, 3, 0, 4, 5, 6, 7], of the first eight variables.
There is also a natural null hypothesis which models the variables independently.
The code to run the inference is shown below:

dataSet = read (readFile theDataFile) :: [MissingPerson] -- input
nw = estNetwork [1,2,3,0,4,5,6,7] estMissingPerson dataSet -- infer BN
nullModel = estMissingPerson dataSet -— null H

Figure 5 shows the first network inferred for variables 0 to 7. an abridged
node listing is given in figure 6. Tipe depends strongly on Age and also on Gender
and Race. As expected, Urban is dependent on Topography. There is some direct
dependence of DistIPP on HrsNt, and of the latter on Age, but there seems to
be no strong predictor of DistIPP from other variables. The model is significant
with a total two-part message length, for the first eight variables, of 5512 nits
against 5936 nits under the null model. Other analyses were tried, for example
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Net: [
-- @1, Age:
{CTleaf _, (Maybe 50:50,N(40.6,27.5)(+-0.5)),...},

-- @2, Race:
{CTleaf _,_, (Maybe 50:50,mState[0.66,0.34]),...3},

-- @3, Gender:
{CTleaf _,_,_,(Maybe 50:50,mState[0.72,0.281),...},

-- @0, Tipe:
{CTfork @1(<[>=19.0|7?)[ ...uses @1, @2, @3... 1},

-- @4, Topography:
{CTleaf ..,(Maybe 50:50,mState[0.17,0.52,0.311),..},

-- 05, Urban:
{CTfork @4(=Mountains..Tidewater|?)[

{CT1leaf. ., (Maybe 50:50,mState[0.93,0.04,0.04]1),..},
{CTleaf. ., (Maybe 50:50,mState[0.70,0.19,0.11]),..3},
{CT1leaf. ., (Maybe 50:50,mState[0.38,0.02,0.6 1),..},
{CT1leaf. ., (Maybe 50:50,mState[0.73,0.2 ,0.071),..}
13,

-- @6, HrsNt:

{CTfork @1(<|>=62.0|7)[

{CTleaf ..., (Maybe 50:50,N( 8.7, 7.6)(+-0.5)),..}
{CTleaf ..., (Maybe 50:50,N(21.4,26.3)(+-0.5)),..},
{CTleaf ..., (Maybe 50:50,N(20.0,...1-case...),..}
13,

-- @7, DistIPP:

{CTfork @6(<|>=1.0|?)[

{CTleaf ..., (Maybe 50:50,N( ...no-cases... ),...},
{CTleaf ..., (Maybe 50:50,N(0.59,0.6)(+-0.2)),...},
{CTleaf ..., (Maybe 50:50,N(1.52,2.8)(+-0.2)),...}
131

network: 115.1 nits, data: 5396.6 nits
null: 5935.6 nits (@0..Q7)

Fig. 6. Trees in the Nodes of the Lost Person Network 1.
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allowing ordered (0rd) splits on Topography and Urban, in place of Bounded
Enum splits; the conclusions were broadly similar.

/

£

EII a
T

Fig. 7. Lost Person Network 2.

When Tipe was allowed to split according to setSplits [[Alzheimers],
[Child]] (section 3.3), the implicit complement being [Despondent...], the
link from Age to HrsNt was replaced by a link from Tipe (which itself depends
strongly on Age) for a saving of 6 nits on the model against a loss of 3.7 nits on
the data (figure 7). However this small net gain should be taken with a big pinch
of salt and may well be due to the pattern of missing data as much as anything.

As a final example, modelling all 15 variables gave the network shown in
figure 8; Tipe has been duplicated for ease of drawing. The extra variables, 8
to 14, are: TrackOffset (continuous); Health = Well | Hurt | Dead; Outcome
= Find | Suspended | ...| Invalid;FindRes = Ground | Air | ... | Dog;
FindLoc = Brush | Woods | ...; HrsFind (continuous); HrsTo (continuous).

3.8 Discussion

Weka [31] which is based on Java is perhaps the system closest to the present
work. Weka’s Bayesian networks “assume that all variables are discrete” [8] p.22
and “a limitation of the current classes is that they assume that there are no
missing values” [8] p.23. In Weka, continuous variables must be discretised first
and the way this is done may affect the outcome. This is unnecessary for mod-
elling and, for splitting, is part of the network optimisation when using our
classification trees (section 3.2). Missing-ness was built into our models (sec-
tion 3.6).
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Fig. 8. Lost Person Network for all 15 Variables.

There are distant similarities between IP and inductive logic programming
(ILP): There has been some interest in the use of complexity-based measures in
ILP [10,21] but this aspect of ILP is less developed than work on MML. The
programmer is involved in design of the search algorithm in IP to a greater extent
than in ILP, typically in designing new models and estimators; it is infeasible to
have a very general search over too large a class of computable statistical model.

A model in IP, particularly one that is used as a component of other models
(figure 9), must be able to handle extreme data sets. For example a Bayesian
network may contain several trees and each tree may contain several leaf distri-
butions. One or more of those leaf distributions may be given a sub-set of data
that is “unusual” — perhaps consisting of just a single item. MML insists that
every model effects a valid, decodable message (in principle) so there can be no
understating of a model’s complexity. A (sub-) model must guarantee this, or at
the very least raise an exception if it cannot. This principle keeps us “honest”
and ensures that the top-level model’s complexity is valid.
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’ Bayesian network ‘

’ classification tree ‘

modelMaybe

’ normal ‘ ’ multi State ‘

Fig. 9. Model Layers.

4 Conclusions

Inductive programming (IP) uses the compositional abilities of functional pro-
gramming, Haskell and MML. Haskell’s features have a number of advantages in
inductive inference. Mapping a data set, such as lost persons, onto the Haskell
type system is a useful exercise in getting to know the data, very precisely; a per-
son doing data analysis will inhabit this space for some time. The need to define
a variable’s properties, e.g. 0rd or not, automatically suggests what is possible,
such as to split Topography as discrete or as ordered (section 3.2). These things
cannot be forgotten; the type and class system brings them to your attention.

The IP code shown is standard Haskell-98 but other experiments [4] do show
that some Haskell type extensions can be useful in some other problems. In-built
support for wide tuples, (,), would make it easier to deal with large multi-variate
data sets, although template Haskell is a possible solution.

High-order functions, such as estModelMaybe (section 3.6), are invaluable
in creating new ways of using arbitrary statistical models. The polymorphic
type system ensures that the uses are both general and type safe. Haskell’s
type inference algorithm often finds a more general type for a function than its
programmer did and this is also the case with statistical models and estimators.
There is potential for an extensive library of operators on statistical models and
their estimators.

Lazy evaluation means, for example, that only models of selected variables
of lost persons (section 3.2) are evaluated. Selections are made once at the top
level, most of the algorithms do not “consider” the matter at all.

Computing model complexity by minimum message length (section 2.1) is a
good match with the compositional style of functional programming. The reader
may hardly have noticed any explicit Message length calculations are handled
by modelMaybe (section 3.6) and other functions, and are combined in the com-
plexity of the Bayesian network (section 3.1, figure 9) and its classification trees
(figure 8) to inform the search.
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A specific model can be created quickly for a new problem thanks to Haskell’s
expressive power. Of course it cannot yet be claimed that the types and classes
created are the best possible designs for a compositional denotational semantics
of for statistical models. For example, a case can be made for specifying the
notion of a data set; perhaps data traversal, data measurement accuracy and
data weights should be wrapped up in suitable types and classes. Only more
experience, and time, will let us settle on the best trade-off between generality,
usability and efficiency, but experience to date is positive.

The Bayesian network estimator, estNetwork, and associated classes Project
and Splits2 [4] (section 3.5) took one day to create. The lost person (section 3.2)
application came along some time later and it took one and a half days to create
a working model, including how to handle missing data (section 3.6) which had
previously been in the ‘must think about that one day’ category. Any amount
of further time can be spent playing with the data once a model and a program
exist, although there is a fine line between data exploration and fishing.
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