The Types of Models

Lloyd Allison,
School of Computer Science and Software Engineering,
Monash University,
Victoria,
Australia 3800.
http://www.csse.monash.edu.au/~lloyd/

15 March 2003

Abstract

The specification of various kinds of statistical model from machine
learning and data mining is examined formally using the type and class
system of the functional programming language Haskell as a meta-language.
Types and classes (in the programming sense) of models, and operations
on models, are defined; many are naturally polymorphic. Convenient con-
version functions map between the classes of models and extend their
range of usefulness. The result is a kind of theory of programming with
models, not only of using them. The “theory” can run as an executable
Haskell program or can throw light on the foundations of platforms for
programming with statistical models. !

Keywords. Model, polymorphism, type, class.

1 Introduction

A good deal of research in machine learning and data mining develops a new
statistical model, or devises a better algorithm to fit such a model to data, or
applies such a model to some problem area. Sometimes a “classical” statistical
model is involved, and sometimes a rather different kind of “model” is studied,
e.g. an artificial neural network or a support vector machine. For want of a
name we use the term statistical model to cover all and any of the above that
deal in probabilities.

This paper develops something different. It examines what is a statistical
model from a computer-programming point of view: How does a model behave,
what can it do, what can be done to it, and what can it associate with? The
functional programming (FP) language Haskell-98 [12] is used as the meta-
language for the study. Various kinds of model are defined by specifying their
types and classes (in the programming sense). Operators on classes of statistical
model are defined and enhance the models’ generality and range of application.
Many of the operators are naturally polymorphic.

1Presented at the Second Hawaii International Conference on Statistics and Related Fields
(HICS03), Honolulu, 2003 June 5-8.

There are some general data-mining platforms such as R [5], S-Plus [17] and
Weka [22] that give some support to programming with models but their notion
of type tends to be dynamic and ad-hoc. The present work brings the precision
and generality of statically-checked (compile-time), polymorphic types to the
problem.

We develop data types and classes for (basic) models including probabil-
ity distributions, for function models including regressions, and for time series
such as Markov-models. Example models and estimators are given. Conversion
functions on models and their estimators allow them to be used more generally
than otherwise. The result is a kind of “theory” of statistical models and of
programming with them. It can be seen as a tool for investigating platforms for
programming with models, and can also be run as an executable program in its
own right.

2 Preliminaries

The paper calls on minimum message length (MML) inference, functional pro-
gramming (FP) (hence MMLFP [2]) and Haskell so those topics are briefly
introduced here for completeness.

2.1 Functional Programming

The origins of functional programming (FP) are in Church’s lambda calculus [4].
Notably, functions are first-class values; i.e. they can be parameters and results
of functions, and elements of data structures. Modern FP languages, such as
Standard-ML [10] and Haskell [8, 12], typically have static, polymorphic type
systems where a structured data type may have one or more type parameters
which can be instantiated in many ways — hence polymorphic. For example
[t]—u is the type of those functions whose parameter is a list, [], of any ele-
ment type, t, and whose result is of some type, u. E.g. length :: [t]—Int,
that is function length is of type [t]—Int, can be applied to any list, and
returns an integer. Another common FP feature is a type inference algorithm
which automatically infers the types of most expressions in a program; the pro-
grammer rarely needs to give types explicitly. Lastly, Haskell has a system of
type classes. A class is defined by the operators required on a data type that is
an instance of the class. There are clear-cut divisions in Haskell: An expression
evaluates to a value, a value has a type, and a type can be an instance of one
or more classes.

FP gets great expressive power from the above features, enough power to
provide the meta-language of denotational semantics [9] which can define the
semantics of essentially all features found in common programming languages.
The objective here is to start to define the semantics of statistical models. Data
types and classes of models, and operations on them, are used to specify the
behaviour of models. Many models and associated operations are naturally
polymorphic. Types and classes are checked statically, by the compiler. The
result is a rigorous “theory” that can be run as a program.

2.2 Minimum Message Length (MML)

Overfitting is a common problem in statistical inference; it really must be ad-
dressed somehow in an inference system and various methods have been pro-
posed as cures. The choice of a particular method is orthogonal to the main
points of this paper but the work was done within the framework of one such
method, namely minimum message length (MML) inference [18, 19], and once a
choice is made the method’s features do appear and reappear so MML is briefly
described. Both MML [18] and the minimum description length (MDL) princi-
ple [14] are Bayesian methods based on information theory. MML is invariant,
consistent and resistant to overfitting.

The MML paradigm considers a transmitter and a receiver. Initially the
transmitter and receiver agree on codes and algorithms to be used to transmit
models (distributions, hypotheses, theories) and data. Naturally they design
codes that give optimum compression in ezpectation. They are then separated
and the transmitter is given data to send to the receiver. A two part message is
used: The first part states a model, M, and the second part states the data, D,
given M. It is, of course, arranged that M is a solution to an inference problem
of interest; the transmitter is made to state an opinion. We have from Bayes
theorem [3] and from Shannon’s mathematical theory of communication (hence
“message”) [15]:

Pr(M & D)
msg(M & D)

Pr(M) .Pr(DIM)
msg (M) +msg (D M)

Pr (D) .Pr(M|D)
msg (D) +msg (M|D)

where msg(E)=-1log(Pr(E)) is the message length in an optimal code of an
event, E. Almost invariably we use the results of Shannon, coding theory and
data compression to calculate what the length of a message would be without
actually doing the encoding and decoding.

The first part, msg(M), of a two part message is a measure of the model’s
complexity and generally increases with the number of parameters of the model
and with the precision to which they are stated. Its inclusion makes for a
trade-off with the second part, msg(M|D), i.e. the negative log likelhood, that
is the fit of the model to the data. Anything that is not common knowledge
must be included else the message will not be decodable; this keeps us “hon-
est”. Continuous-valued parameters must be stated to optimum, finite precision.
The complexity of Strict MML (SMML) inference is, in general, NP-hard [7] but
good practical MML approximations exist for many important inference prob-
lems [19].

3 Models

Here we define a Haskell class, Model, a broad sub-set of the collection of all sta-
tistical models. The most important property of a Model is its ability to assign a
probability, pr, to a datum from its data space (sample space). Equivalently for
MML purposes, a Model assigns a message length, msg?2 (for 2nd-part), to a da-
tum. (A Model of a continuous data space instead assigns a probability-density
which combines with the data measurement-accuracy to give a probability; in
reasonable conditions this accuracy “passes through” the calculations and we
will ignore the distinction here for simplicity.) A Model may be able to do other

things, such as generate sample data, but pr seems to be most important. Class
Model shares further properties with other classes to be defined, such as having
a message length (complexity), msgl, of its own. Common properties are at-
tached to a super-class, SuperModel; see Sect.4. The Haskell code below states
that a data type, mdl, is in class Model if it has a type parameter, dataSpace,
and if the required operations are defined. Note that mdl dataSpace is also
required to be a SuperModel, by the condition SuperModel (mdl dataSpace)
=>... in the type of msg:

class class Model mdl where
pPT :: (mdl dataSpace) -> dataSpace —> Probability

msg :: SuperModel (mdl dataSpace) =>
(mdl dataSpace) -> dataSpace -> MessagelLength
msg2 :: (mdl dataSpace) -> dataSpace -> MessageLength

pr md =2 ** (-msg2 m d) -- Defaults; an
msg2 m d = -(logBase 2 (pr m d)) -- instance must
msg md = (msgl m) + (msg2 m d) -- define pr or msg2.

One or more data types such as ModelType can now be declared and made
instances of class Model. ModelType gives a choice between two constructor
functions — MPr and MMsg. A value of ModelType, i.e. an actual Model, is made
by giving MPr its complexity and probability function, or equivalently by giving
MMsg its complexity and message length function for data:

data ModelType dataSpace =
MPr MessagelLength (dataSpace -> Probability) |
MMsg MessagelLength (dataSpace -> MessageLength)

instance Model ModelType where
msg2 (MPr mdllen p) d = - logBase 2 (p d) -- in bits
msg2 (MMsg mdlLen m) d = m d

Some Models have zero message length because they have no parameters,
e.g. universal Models for integers [6, 14]. Wallace’s integer model is an example
of a universal Model of non-negative Ints, based on a code originally presented
for classification-trees [21]: The length of a code word for an integer is always
an odd number of bits. The “steps” where message lengths increase are always
of 2-bits so this universal (model and) code is smoother than some others [14];
numbers of integers having code words of [1, 3, 5, 7, 9,...] bits are given by the
Catalan numbers [1, 1, 2, 5, 14,...].

wallaceIntModel =
let catalans = ...

cumulativeCatalans = scanll (+) catalans
find n posn (e:es)
if n < e then posn else find n (posn+l) es

in MMsg 0 (\n -> (find n O cumulativeCatalans) * 2 + 1)

Budding Haskell programmers note that scanll (+) forms cumulative sums
which are searched, above, by find. The pattern ‘e:es’ matches non-empty

lists that start with e and continue with es. ‘\’, for lambda, and ‘-’ are used
to define anonymous functions, e.g. \n—n+1 is the successor function. Lazy
evaluation allows an infinite list, such as catalans, to be defined in Haskell,
provided that not all of its elements are used.

A probability distribution over a range of Ints [0..n-1] can be estimated
from frequencies of occurrence by a function such as freqs2model:

freqs2model fs =

let total = foldl (+) O fs
probs = -- obvious
partl = ...
pn =probs !!n

in MPr partl p

freqs2model returns a Model, given a list of n frequencies, fs. Note that foldl
(+) 0 fs sums the elements of fs and that ‘!'! n’ selects the nth element of
a list. Calculating the Model’s complexity, i.e. part1, was specified by Wallace
and Boulton [18]; the details are not relevant here. p is the probability function.
Similarly, estimators can be given for other distributions such as the normal
(Gaussian) and so on.

A simple example operator, modelInt2model, on Models converts a Model
of Int into a Model of some other discrete data space of appropriate size. An
example value, egValue, is used to inform the type checker.

modelInt2model egValue intModel =
let toInt datum = ...
p datum = pr intModel (toInt datum)
in MPr (msgl intModel) p

A multi-state distribution can now be estimated for an enumerated, bounded
data space. Occurrences in a dataSet are counted and the frequencies used to
form a Model of Int which is converted to the data space:

estMultiState dataSet =
modelInt2model (dataSet !! 0) (fregs2model (count dataSet))

For example, myCoin=estMultiState [H,H,T,H,...] is a Model of throws of a
coin. Throw is its data space. It cannot be accidentally used with any other
type of data. E.g. The type checker accepts pr myCoin H and rejects pr myCoin
True, say.

A bivariate Model can be formed from a pair of Models, m1 and m2, and their
data spaces. For example, bivariate fairCoin wallaceIntModel is a Model
of a throw and a non-negative integer.

bivariate (ml, m2)
let m (d1, d2) =

(msg2 m1 d1) + (msg2 m2 42)
in MMsg ((msgl ml)

+ (msgl m2)) m

Operator bivariate assumes that the two attributes (variables) are indepen-
dent; a more complex factor-Model [20] could be created. A bivariate estimator
can also be formed from a pair of univariate estimators.

4 More Classes

There are many kinds of statistical model that are not covered by class Model
(Sect.3). Two more important classes are FunctionModel and TimeSeries.
These share some properties, notably msgl, with Model: They are all sub-
classes of SuperModel mentioned before. Other common properties are having
a prior probability and being able to form a mixture. Forming a mizture, that
is a weighted average as in mixture modelling, is an important operation not
only on Models but also on FunctionModels and TimeSeries, and hence on
SuperModels. A data type, MixtureType, contains a Model over the compo-
nents and a list of components. Class Mixture specifies that an instance must
deliver its components and a Model, mixer, which amounts to the “weights”
over them:

class SuperModel sMdl where

prior :: sMdl -> Probability
msgl :: sMdl -> MessagelLength
mixture :: (Mixture mx, SuperModel (mx sMdl)) =>

mx sMdl -> sMdl

class Mixture mx where
mixer :: (SuperModel t) => mx t -> ModelType Int
components :: (SuperModel t) => mx t -> [t]

data (SuperModel elt) =>
MixtureType elt = Mix (ModelType Int) [elt]

instance (SuperModel elt) =>
SuperModel (MixtureType elt) where
msgl (Mix m es) = foldl (+) (msgl m) (map msgl es)

Finally as promised earlier (Sect.3), we can turn a Model, or at least ModelType,
into a SuperModel:

instance SuperModel (ModelType dataSpace) where
msgl (MPr mdllen p) = mdllLen
msgl (MMsg mdlLen m) = mdlLen
mixture mx = ...

A mixture of Models of a data space is itself a Model of the data space.

4.1 Function Models

A FunctionModel captures the relationship between input (independent, ex-
ogenous) attributes (variables) and output (dependent, endogenous) attributes,
e.g. alinear-model of x fitting y with linear a b epsilon,i.e. a*x+b with noise
from normal 0 epsilon. A FunctionModel produces a conditional Model of its
output space, opSpace, given a value from its input space, inSpace. Conditional
probabilities, condPr, and message lengths can be got from the conditional
Model:

class FunctionModel fm where
condModel :: (fm inSpace opSpace) ->
inSpace -> ModelType opSpace

condMsg2 :: (fm inSpace opSpace) ->
inSpace -> opSpace -> MessagelLength
condPr :: (fm inSpace opSpace)

-> inSpace -> opSpace -> Probability

data FunctionModelType inSpace opSpace =
FM Messagelength (inSpace -> ModelType opSpace)

FunctionModelType is made an instance of FunctionModel and SuperModel in
the obvious way. Later (Sect.6) classification trees are made FunctionModels.
A mixture of FunctionModels is also a FunctionModel.

As an example, a finite FunctionModel over finite input and output spaces
can, assuming no correlation, be estimated by counting, using the estimator for
a multi-state distribution (Sect.3) for each input case:

estFiniteFunction ipSeries opSeries =
estFiniteIpFunction estMultiState ipSeries opSeries

4.2 Time-Series

A TimeSeries describes a data series, perhaps one dependent literally on time,
or just a long sequence such as a biological sequence [16]. The predictors
function of a TimeSeries returns a sequence (list) of predictions, i.e. a sequence
of Models, for the next value given the context of preceding values at each
position. One natural way to define a value of TimeSeriesType is to give its
message length (complexity) and a function that maps from a context to a
Model. The probabilities, prs, and message lengths, msg2s, per datum can be
obtained from predictors.

class TimeSeries tsm where

predictors :: (tsm dataSpace) ->

[dataSpace] -> [ModelType dataSpacel
msg2s :: (tsm dataSpace) ->

[dataSpace] -> [MessagelLength]
prs :: (tsm dataSpace) ->

[dataSpace] -> [Probability]

data TimeSeriesType dataSpace =
TSM MessageLength ([dataSpace] -> ModelType dataSpace)

TimeSeriesType is an instance of SuperModel and of TimeSeries in the obvious
way.

As an example, a Markov-model of order k can be estimated by using the
estimator for a FunctionModel on discrete lists of length k. The data series
is scanned to form a sequence of contexts. The contexts are the inputs for
the FunctionModel and the latter is converted into the desired TimeSeries by
functionModel2timeSeries (see Sect.4.3):

Super-
-Model

A
/

Time- | " | Model | " | Function—|

—Series \’/ —Model

Figure 1: Classes.

estMarkov k dataSeries =
let scan ... = ...
contexts = scan dataSeries []
in functionModel2timeSeries
(estFiniteListFunction k contexts dataSeries)

4.3 Conversion Functions

Model, FunctionModel, TimeSeries and SuperModel cover a good range of
statistical models including probability distributions, (unsupervised) mixture
models, Markov-models, regressions, (supervised) classification functions, and
so on. There are some useful conversion functions between the classes (Figure 1).

A Model of a dataSpace can be mapped trivially to a FunctionModel of some
inSpace and dataSpace by always returning the given Model. In a similar way
the Model can be mapped to a TimeSeries of dataSpace by ignoring the context
of past values when making a prediction. We give the types of the functions
although the programmer does not need to do this, rather the compiler infers
the types in practice:

model2functionModel :: (Model mdl) =>
mdl dataSpace -> FunctionModelType inSpace dataSpace

model2timeSeries :: (Model mdl) =>
mdl dataSpace -> TimeSeriesType dataSpace

A FunctionModel of inSpace and opSpace can be turned into a Model of
(inSpace, opSpace) by using condModel of the FunctionModel and effectively
taking the input attributes as common knowledge — this is valid in some super-
vised learning problems. A FunctionModel of [dataSpace] and dataSpace can
be turned into a TimeSeries of dataSpace by “applying” the FunctionModel
to each prefix of the data series:

functionModel2model :: (FunctionModel fm) =>
fm inSpace opSpace -> ModelType (inSpace, opSpace)

functionModel2timeSeries :: (FunctionModel fm) =>
fm [dataSpace] dataSpace -> TimeSeriesType dataSpace

A TimeSeries of dataSpace can map to a Model of whole data series, that
is of [dataSpace]: The message length of a data series includes a term for the
length of the series, e.g. under wallaceIntModel (Sect.3), say, and a term for
each value in the series. A TimeSeries of dataSpace can also be mapped onto
a FunctionModel of [dataSpace] and dataSpace by using the prediction made
by the TimeSeries in the context of the whole data series:

timeSeries2model :: (TimeSeries tsm) =>
tsm dataSpace -> ModelType [dataSpace]

timeSeries2functionModel tsm :: (TimeSeries tsm) =>
tsm dataSpace -> FunctionModelType [dataSpace] dataSpace

A FunctionModel, fm, describes the relationship of its input space, inSpace,
to its output space, opSpace. A Model of (inSpace, opSpace) can be formed
if we are also given a Model, md1, of inSpace:

conditionalize mdl fm =
let p (ip, op) = (pr mdl ip) * (condPr fm ip op)
in MPr ((msgl mdl)+(msgl fm)) p

The set of conversion functions on statistical models is mirrored in a set of
similar functions on their estimators. They are more than interesting curiosities,
enabling all models to be used in new ways, as illustrated below.

5 Unsupervised Classification+-+

Unsupervised classification, also known as clustering, provided one of the first
applications of information-based machine learning: Given multivariate data,
find a mixture model that best describes the data. The number of components of
the Model and the components’ parameters are not known in advance. Snob [18]
used (and uses) MML to solve the problem of balancing the complexity of the
mixture against its fit to the data.

An estimator for a mixture is easily expressed in our present system. For
simplicity only, we consider an estimator, estMixture, for a given number of
components, but in principle it can be used for a search through 1, 2, 3....
components to some reasonable limit. estMixture is given a list, ests, of
weighted estimators, one per component (different kinds of distribution can be
used), and data. In a simplification (and slight abuse) of the type notation we
have, in spirit:

estMixture ::
[[dataSpace] -> [Double] -> Model dataSpace] -- estimators
-> [dataSpacel -- training data
-> Mixture (Model dataSpace) -- result

estMixture starts by allocating random fractional memberships of the data
across the components of the mixture. A new mixture is fitted to the current
memberships. New memberships are fitted to the current mixture, and so on.
This leads to a typical expectation-maximization cycle.

estMixture ests dataSet =

let

memberships (Mix mixer components) = ...

randomMemberships = ...

fit (est:ests) (mem:mems) = (est dataSet mem): (fit ests mems)
fit [1 [0 = [

fitMixture mems = Mix (freqs2model (map (foldl (+) 0) mems))
(fit ests mems)

cycle mx = fitMixture (memberships mx)

cycles 0 mx = mx

cycles n mx = cycles (n-1) (cycle mx)

in mixture(cycles <some_Number> (fitMixture randomMemberships))

Note that the use of total-assignment would lead to biased estimates and that the
use of fractional memberships with weighted estimators, as above, is unbiased.

In principle estMixture lets us find mixtures of any kind of distribution and
data provided only that distribution(s) and data match. It can also be used
with conversion functions (Sect. 4.3). E.g. An estimator for a FunctionModel
of inSpace and opSpace can be converted into an estimator for a Model of
(inSpace, opSpace) for use with estMixture which can therefore, in effect,
infer mixtures of FunctionModels, and so on.

6 Supervised Classification++

The supervised classification problem is: Given data that have already been
classified, i.e. corresponding elements from inSpace and from opSpace, infer
a FunctionModel to describe the relation between inSpace and opSpace. In
the simplest case opSpace is a finite space of categories. There are many im-
plementations of classification functions, for example classification trees (some-
times called decision-trees) [13], classification graphs [11], and support vector
machines (binary case) to name just three.

CTreeType, for classification-tree, is an example of a FunctionModel. A
tree consists of leaves (CTleaf) and forks (CTfork). Each leaf holds a Model
of the output space. Each fork holds a selector-function to test values of input
attributes to select a subtree, the function’s message length (complexity), and
a list of subtrees. CTreeType is made an instance of FunctionModel (Sect.4.1):

data CTreeType inSpc opSpc =
CTleaf (ModelType opSpc) |
CTfork MessageLength (inSpc->Int) [CTreeType inSpc opSpc]

instance FunctionModel CTreeType where

condModel (CTleaf leafModel) i = leafModel
condModel (CTfork fnLen f dts) i = condModel (dts!!(f i)) i

10

Note that other kinds of fork, for example a fork that forms a mizture of the
subtrees [2], are also possible.

Our classification-trees are already very general: The leaves can contain
arbitrary Models — of discrete, continuous or multivariate output spaces.

An estimator, estCTree, of classification-trees easily fits into our system. It
is given an estimator for leaf Models, a method of producing valid partitioning
functions, and training inputs and outputs. A partitioning function tests the
input attribute(s) and divides the training data into parts; such functions are
easily created to split on discrete and continuous attributes. By a simplification
of the type notation we have roughly:

estCTree :: ([opSpace]l->Model opSpace) -- est’ a leaf
-> ([inSpacel->[inSpace->PartNums]) -- partitions
-> [inSpace] -> [opSpace] -- training data

-> CTreeType inSpace opSpace

An example search algorithm compares the simplest tree (1-leaf) with more
complex trees (each of 1-fork, under 0-lookahead). The best is chosen on the
basis of total message length. The search is over if the 1-leaf tree is best,
otherwise it continues recursively on each subtree with its appropriate part of
the data. A tree’s structure is part of its message length (complexity); the
details [21] are interesting but not relevant here.

Recalling (Sect.4.3) that an estimator for a FunctionModel of inSpace
opSpace can be converted into one for a Model of (inSpace, opSpace), we
see that estCTree can also infer FunctionModel-trees, i.e. regression-trees:

estFunctionModel2estModel estFn ipOpPairs =
functionModel2model (uncurry estFn (unzip ipOpPairs))

fnMdlTree = estCTree (estFunctionModel2estModel estFnMdl)
splitFns ipTrainSet opTrainSet

The details of estFunctionModel2estModel are unimportant; the point is that
the little two-line function adapts our trees to a whole new problem. Combina-
tions such as this show the generality of the system.

7 Conclusion

The semantics of a range of statistical models from machine learning and data
mining has been defined, covering basic Models and probability distributions,
FunctionModels such as conditional probability tables and classification func-
tions, TimeSeries such as Markov-models, and mixtures. Data types and type
classes have been given to make precise models’ behaviour, operations on them,
and functions between them. This model of modelling is expressed in the func-
tional programming language Haskell-98 so it is statically type-checked and can
be run.

Functional programming gained great expressive power from treating func-
tions as first-class values; here we have treated models as first-class values. That
is, models can be parameters of functions and of other models, results of func-
tions and elements of data structures. This has previously been very useful
in special cases [1] and we have generalized the idea. There is clear potential

11

for a sophisticated library of types, classes and operations on many kinds of
statistical model.

The Haskell notation is succinct and powerful. Its polymorphic types and
type inference algorithm are invaluable as many (most?) models, estimators
and operations on them are naturally polymorphic. One result of the work is an
improved understanding of the behaviour of various kinds of models and their
estimators. It can be considered a rapid-prototype for a data-mining platform.

The current code cannot be used for data-mining of huge data sets because it
assumes that the data fit in memory, although that restriction could be removed
in principle. On the other hand, the code is more than a mere toy and can solve
real problems. For example, estimators have been given for supervised and
unsupervised classification (Sect.5,6). Thanks to the class design and conversion
functions, such estimators and their results are already more general than would
otherwise be the case.

References

[1] Allison, L., Powell, D., Dix, T. I.: Compression and Approximate Matching.
Computer Journal 42(1) (1999) 1-10

[2] Allison, L.: Types and Classes of Machine Learning and Data Mining. 26th
Australasian Computer Science Conference (ACSC), Adelaide, ACS Series
Conferences in Research and Practice in Information Technology V16 (2003)
207-215

[3] Bayes, T.: An Essay Towards Solving a Problem in the Doctrine of Chances.
Phil. Trans. of the Royal Soc. of London 53 (1763) 370-418. Reprinted in
Biometrika 45(3/4) (1958) 293-315

[4] Church, A.: The Calculi of Lambda Conversion. Princeton University Press
(1941)

[5] The Comprehensive R Archive Network. http://lib.stat.cmu.edu/R/CRAN/
(current 2002)

[6] Elias, P.: Universal Codeword Sets and Representations of the Integers.
IEEE Trans. Inform. Theory IT-21 (1975) 194-203

[7] Farr, G. E., Wallace, C. S.: The Complexity of Strict Minimum Message
Length Inference. Computer Journal 45(3) (2002) 285-292

[8] Hudak, P. et al: Report on the Programming Language Haskell, version 1.2.
Sigplan 27(5) (1992)

[9] Milne, R., Strachey, C.: A Theory of Programming Language Semantics.
Chapman Hall, two volumes (1976)

[10] Milner, R., Tofte, M., Harper, R. M.: The Definition of Standard ML. MIT
Press (1990)

[11] Oliver, J.: Decision Graphs - an Extension of Decision Trees. 4th Int. Conf.
Artificial Intelligence and Statistics (1993) 343-350

12

[12] Peyton Jones, S. et al: Report on the Programming Language Haskell
98. http://www.haskell.org/ (1999-2003), also, Haskell 98 Language and Li-
braries, the Revised Report, Cambridge U. P. (2003)

[13] Quinlan, J. R.: C4.5: Programs for Machine Learning. Morgan Kaufmann
(1992)

[14] Rissanen, J.: A Universal Prior for Integers and Estimation by Minimum
Description Length. Annals of Statistics 11(2) (1983) 416431

[15] Shannon, C. E.: A Mathematical Theory of Communication. Bell Syst.
Technical Jrnl. 27 (1948) 379423 and 623656

[16] Stern, L., Allison, L., Coppel, R. L., Dix, T. I.: Discovering Patterns in
Plasmodium Falciparum Genomic DNA. Molecular and Biochemical Para-
sitology 118(2) (2001) 175-186

[17] Venables, W. N., Ripley, B. D.: Modern Applied Statistics with S-PLUS.
3rd edn., Springer (1999)

[18] Wallace, C. S., Boulton, D. M.: An Information Measure for Classification.
Computer Journal 11(2) (1968) 185-194

[19] Wallace, C. S., Freeman, P. R.: Estimation and Inference by Compact
Coding. Journal of the Royal Statistical Society series B. 49(3) (1987) 240—
265

[20] Wallace, C. S., Freeman, P. R.: Single-Factor Analysis by Minimum Mes-
sage Length Estimation. J. Royal Stat. Soc. B 54(1) (1992) 195-209

[21] Wallace, C. S., Patrick, J. D.: Coding Decision Trees. Machine Learning
11 (1993) 7-22

[22] Witten, I. H., Frank, E.: Nuts and Bolts of Machine Learning Algorithms
in Java. In Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations, Morgan Kaufmann (2000) 265-320

13

