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Alignment algorithms can be used to infer a relationship between sequences when the true
relationship is unknown. Simple alignment algorithms use a cost function that gives a "xed
cost to each possible point mutation*mismatch, deletion, insertion. These algorithms tend to
"nd optimal alignments that have many small gaps. It is more biologically plausible to have
fewer longer gaps rather than many small gaps in an alignment. To address this issue, linear
gap cost algorithms are in common use for aligning biological sequence data. More reliable
inferences are obtained by aligning more than two sequences at a time. The obvious dynamic
programming algorithm for optimally aligning k sequences of length n runs in O(nk ) time. This
is impractical if k*3 and n is of any reasonable length. Thus, for this problem there are many
heuristics for aligning k sequences, however, they are not guaranteed to "nd an optimal
alignment. In this paper, we present a new algorithm guaranteed to "nd the optimal alignment
for three sequences using linear gap costs. This gives the same results as the dynamic
programming algorithm for three sequences, but typically does so much more quickly. It is
particularly fast when the (three-way) edit distance is small. Our algorithm uses a speed-up
technique based on Ukkonen's greedy algorithm (Ukkonen, 1983) which he presented for two
sequences and simple costs.
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1. Introduction

A new algorithm is presented to align optimally
three sequences using linear gap costs. This algo-
rithm is an extension of the two sequences,
simple cost algorithm by Ukkonen (1983). For
sequences of length n that have an optimal align-
ment with edit cost d our new algorithm has
a time complexity of O (d3#n) on average, which
is nearly always attained, and O (nd2) in the worst
case. We make explicit a "nite-state model (FSM)
for the generation of sequences from a parent
sequence when using a linear function to cost
a run of insertions or deletions. For this model,
we show as how the probabilities of matches,
uthor for correspondence.

22}5193/00/230325#12 $35.00/0
changes, insertions and deletions in the "nite-
state machine relate to the costs in the alignment
algorithm.

Sequence alignment algorithms are used in
a number of di!erent areas. Currently, one of
these important areas is the aligning of macro-
molecules such as DNA sequences and protein
sequences. An alignment shows as how two, or
more, sequences may be related. For example,
a good alignment between the sequences
ATCGCA and TTCGA might be

A T C G C A
D D D D .

T T C G } A

The &&}'' indicates a character that has been
deleted from that sequence, or alternatively
( 2000 Academic Press
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a character that has been inserted in the other
sequence. A version of alignment is to assign a
"xed cost to each possible point mutation. For
example, simple costs give a cost of 0 to a match,
and a cost of 1 to a change, insertion or deletion.
Thus, if simple costs were used, the above align-
ment would have a cost of 2. An alignment with
minimal cost is said to be optimal. An alignment
can also be interpreted as showing how to edit
one sequence into another, thus the cost is some-
times referred to as edit cost or edit distance
(Levenshtein, 1966; Sellers, 1974).

Linear gap costs are often used instead of
simple costs because linear gap costs better
model the underlying process. For example, in
some biological processes it is considered more
likely to have a small number of long gaps than
a large number of small gaps. Linear gap costs
favour a small number of longer gaps by having
a start-up cost for each gap. Linear gap costs give
a run of l insertions or deletions a cost of
w(l)"a#b]l, for some "xed values of a and
b (Gotoh, 1982). Altschul & Erickson (1986) sug-
gest a linear gap cost function of w(l)"2.5#l/2,
while w(l)"3#l is in common use.

In many circumstances it is important to align
optimally more than two sequences. The obvious
dynamic programming algorithm for k sequences
requires O(nk ) time to run which is infeasible for
k*3 with n of any reasonable length. Improved
algorithms for k sequences have been studied and
algorithms such as those by Carrillo & Lipman
(1988) and later by Altschul & Lipman (1989)
have been developed. These algorithms use the
optimal alignment of pairs of sequences as a heu-
ristic to limit the k-dimensional volume used to
"nd an optimal alignment.

For many applications, such as building
evolutionary trees (Sanko! & Morel, 1973;
Sanko!& Cedergren, 1983) from sequences or in
sequence assembly, it is desirable to align three
sequences at a time. There are many multiple
sequence alignment algorithms that use pairwise
sequence alignment in an iterative method to
build up a multiple alignment (Notredame et al.,
1998; Thompson et al., 1994; Taylor, 1988;
Higgins & Sharp, 1988). Some algorithms such as
MASCOT (Hirosawa et al., 1993) use the extra
information obtained from three-way alignment
to improve the multiple alignment. Three-way
alignment is useful in evolutionary tree algorithms
because every internal node of the tree has three
neighbours. The three-way alignment can be used
to make an inference for the sequence at the
internal node, this can then be used in an iterative
method to improve the evolutionary tree.

Gotoh (1986) presented an algorithm for align-
ing three sequences with linear gap costs based
on the simple alignment DPA. We present an
algorithm to which Gotoh's is an approximation.
We also develop a fast algorithm for three se-
quences with linear gap costs which is based on
Ukkonen's (1983) algorithm.

The alignment algorithms discussed in this
paper can be classi"ed by the following at-
tributes: alignment of two strings vs. three strings;
simple costs vs. linear gap costs; and the standard
DPA vs. Ukkonen's faster algorithm. For each of
these three attributes, the "rst mentioned is typi-
cally the simpler case and the second the more
complex and often more desirable. Ukkonen's
algorithm is generally preferred over the DPA
because the time complexity is reduced. Simple
costs are a special case of linear gap costs; thus
linear gap costs are more versatile, and often
provide a better model. Optimal alignment of
three strings is often better than alignment of two
strings because it provides more information on
how the strings are related.

From these three independent attributes there
are 23"8 di!erent algorithms possible. Table 1
shows how the two new algorithms presented in
this paper relate to previously known alignment
algorithms in terms of the three independent
attributes. The simplest of the eight algorithms is
for two strings with the standard DPA and
simple costs, this is discussed brie#y in Section
3.1. The next simplest algorithm uses linear gap
costs instead of simple costs (Gotoh, 1982) and is
summarized in Section 3.1.1. In Section 3.2, we
discuss the algorithm by Ukkonen (1983) which
is for two strings and simple costs. The "nal
algorithm for two strings again uses the Ukkonen
speed-up with two strings but extends it to linear
gap costs (Yee & Allison, 1992).

The simplest three string alignment algorithm
is an extension of the DPA for two strings and
uses simple costs. Ukkonen's speed-up can also
be applied to three strings (Allison, 1993b).
Three-string alignment with linear gap costs is



TABLE 1
Summary of the relation of this paper1s contributions with previous alignment algorithms

DPA-based Ukkonen-based

2 sequences 3 sequences 2 sequences 3 sequences

Simple costs (Levenshtein, 1966) Various (Ukkonen, 1983) (Allison, 1993b)
(Sellers, 1974)

Linear costs (Gotoh, 1982) (Gotoh, 1986)* (Yee & Allison, 1992) This paper

*For tree-costs Gotoh's algorithm is an approximation to our new algorithm.
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also possible; an algorithm for this problem
based on the DPA was shown by Gotoh (1986).
However, Gotoh's algorithm is somewhat lim-
ited. We point out these limitations and present
an algorithm of which Gotoh's is a special case.

Of course, it is desirable to have an alignment
algorithm for three strings with linear gap costs
using the Ukkonen speed-up. Such an algorithm
is the main contribution of this paper. The aver-
age time complexity of the algorithm for strings
of length n, is shown to behave as O (d3#n)
where d is the edit cost.

To illustrate the usefulness of our new
Ukkonen-based algorithm for three sequence
over the DPA-based algorithm we ran our pro-
grams implementing both algorithms on some
real biological sequences. We selected clipped
DNA sequences from the Transthyretin gene for
a human, a mouse and a rat. The Genbank ids
of the sequences used are HUMPALA(27-470),
MMALBR(27-467) and RATPALTA(10-453),
respectively. The costs used are as follows: 0 for
a match, 1 for a change, 3 to start a gap, and 1 to
continue a gap. Under these costs, the edit dis-
tance of the three sequences is 109. Aligning these
sequences shows that the Ukkonen-based algo-
rithm runs quickly and has modest memory re-
quirements while the DPA-based algorithm is
almost impractical. The details of this example
run are given in Section 5.

Ukkonen's algorithm requires the cost of
a match to be 0, and the other mutation costs to
be small integers. This makes it useful for aligning
nucleotide data because such costs are commonly
used. It is standard to use mutation costs based
on a substitution matrix while aligning protein
sequences (Dayho! et al., 1978; Heniki! &
Heniko!, 1992). These matrices do not use small
integer costs, thus the Ukkonen algorithm is not
typically useful for aligning protein sequences.
The new algorithm we present in this paper uses
a speed-up based on Ukkonen's algorithm, and
correspondingly it typically will not be useful for
aligning protein sequences.

It may occur to the reader that if the alignment
of three strings is an improvement on two strings,
then why not four strings, or indeed k strings.
Optimal alignment of k strings with a DPA-type
algorithm has a time complexity of O(nk) for
strings of length n. This becomes prohibitive for
long strings with k around 4 or above. The next
improvement to consider would be Ukkonen's
algorithm for k strings, which would be expected
to have an average time complexity of O(dk#n)
where the edit cost of the k strings is d. The
problem here is that as the number of strings
increases, the edit cost also tends to increase.
Thus, it is more likely that d will become larger
than n, therefore Ukkonen's algorithm will be
slower than the DPA version at some point.
Although for sequences with a large number
of matches a Ukkonen style algorithm will be
fast compared to the corresponding DPA style
algorithm.

2. Linear Gap Costs

The simple costs used in the basic DPA are not
as biologically plausible as linear gap costs. Lin-
ear, also called a$ne, gap costs use a "xed muta-
tion cost, and a linear function for a run of
insertions or deletions in the gap. The linear
function gives a start-up cost to a gap then
a lower cost for each character in the gap, thus
a few long gaps are favoured over many short
ones. This provides a better model for biological



FIG. 1. A three-state "nite-state machine to produce one
sequence from another.

D[0, 0]"0
D[i, 0]"i *deleteCost, i"1 . . DAs D
D[i, j ]"j * insertCost, j"1 . . DBs D

for j"1 . . DBs D
for i"1 . . DAs D

D[i, j]"min(D[i, j!1]#insertCost,
D[i!1, j]#deleteCost,
D[i!1, j!1]#(if As[i]"Bs[ j] then

matchCost
else
changeCost))

FIG. 2. The DPA to determine minimum edit distance.
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mutations than simple costs does and thus has
been used in many algorithms for aligning bio-
logical sequence data (Myers & Miller, 1988;
Gotoh, 1990).

An interpretation (Allison et al., 1992) of linear
gap costs is to think of one sequence generated
from another via a FSM with three states as in
Fig. 1. Note that we will use M to denote the
match/change state, I to denote the insert state,
and D to denote the delete state. The FSM can be
seen as processing an input sequence a character
at a time, and producing an output sequence
a character at a time. Every transition into the
delete state uses a character from the input
sequence without producing any character in the
output sequence. A transition into the insert state
produces a character on the output (chosen from
some distribution) without a!ecting the input.
The &&match/change'' state takes a character from
the input sequence and generates a character in
the output sequence. Whether the character is
copied correctly or mutated is determined with
probability, P

change
.

It is normal when using linear gap costs
to have the probability of continuing a gap
higher than the starting one. That is, P(Ins DI)'
P(Ins DM) and P(DelDD)'P(Del DM).

It is often more convenient to use costs instead
of probabilities in alignment algorithms. If the
cost of a match (or copy) is set to zero, the other
costs can be chosen from the probabilities in such
a way as to leave the rank order of alignments
unchanged (Allison, 1993a). It is common in the
literature to have linear gap costs of the form
w(l)"a#b]l for a gap length of l(l'0). The
cost a is the cost of starting a gap, and b is the
cost of continuing that gap (typical values, a"3,
b"1). In this paper, we refer to the costs
in the FSMs in the form C (Match DM). Using
this notation, C(Ins DM )"C(Ins DD)"
a#b and C (Ins DI)"b;C(Del DM)"C(Del DI)"
a#b and C(Del DD)"b. It is necessary when
using Ukkonen-based algorithms for matches to
cost 0, thus: C(Match DM)"C(Match DD )"
C(Match DI )"0. And the mutation cost for copy-
ing a character incorrectly, C (Change), is often
set to 1. Modifying the costs to leave the rank
ordering of alignments unchanged can be ac-
complished by multiplying all costs by a constant
factor, or by adding (or subtracting) a constant
value for each alignment character. This allows
the costs to be modi"ed to convenient small
integers as required by Ukkonen's algorithm.
This correspondence between probabilities and
costs can be used to choose costs that match
some known probabilities, or the FSM probabil-
ities can be calculated for commonly used align-
ment costs.

3. Alignment of Two Sequences

3.1. THE BASIC DPA

The basic DPA to align two strings, As and Bs,
uses an edit distance matrix where each entry
D[x, y] contains the edit distance between strings
As[1 . . x] and Bs[1 . . y]. The algorithm is given
in Fig. 2. To obtain an alignment using this
algorithm it is necessary to trace back through



M;[ab, d]"max a s.t. D[a, b]"d where ab"a!b
"!in"nity if no such a existsN

;[0, 0]"max a s.t. As[1 . .a]"Bs[1 . . a]
;[ab, d]"!in5nity, if Dab D'd

MOuter loop, iterated until ;[ DAs D!DBs D , d]"DAs DN
;[ab, d]"max(;[ab#1, d!insertCost],

;[ab, d!changeCost]#1,
;[ab!1, d!deleteCost]#1)

MInner ¸oop, extends diagonal on a run of matchesN
while (As[; Dab, d]#1]"Bs[;[ab, d]!ab#1])
;[ab, d]#"1

FIG. 3. Ukkonen's algorithm for simple mutation costs.

ALIGNMENT ALGORITHMS USING GAP COSTS 329
the matrix from D[ DAs D , DBs D] to D[0, 0] follow-
ing which choices were made by the min( )
function.

3.1.1. DPA with ¸inear Gap Costs

The basic DPA can be modi"ed to compute an
optimal alignment using a linear gap cost func-
tion (Gotoh, 1982). The DPA for linear gap costs
has three matrices instead of one*one each for
the three possible states corresponding to the last
state of the FSM, match/change, insert or delete.
The linear gap cost DPA has time complexity
O(n2) and space complexity O (n2), the same as
for the basic DPA.

3.2. UKKONEN'S ALGORITHM

Ukkonen (1983), and independently Myers (1986),
presented an alignment algorithm that runs in
O(nd) time in the worst case and O (n#d2 ) on
average, where n is the length of the strings, which
are assumed to be of the same order, and d is the
edit cost. This algorithm uses O(d2) space or if no
alignment is required O (d) space. A necessary
condition for this algorithm is that a match costs
0, and all other mutation costs are small positive
integers. The smaller the edit cost, d, the faster
the algorithm runs. Thus, it is desirable to choose
small costs, which may be able to be done with-
out a!ecting the rank order of the alignments (as
detailed at the end of Section 2).

A recent algorithm, Calign (Chao et al., 1997),
uses a Ukkonen style method for aligning cDNA
and genomic DNA. This algorithm uses re-
stricted a$ne gap costs, which are essentially
linear gap costs with a maximum cost for an
insertion. This allows for large gaps as expected
when aligning cDNA and genomic DNA by hav-
ing a "xed cost for large gaps over a pre-de"ned
size.

Ukkonen's algorithm speeds up the basic DPA
by recognizing a number of facts about the DPA
matrix: not all the entries of D are needed, the
diagonals of D are non-decreasing, and only the
end point of a run of matches is important. An
alternative matrix ; is used in Ukkonen's algo-
rithm. Entry ;[ab, d] contains the maximum
distance obtainable along string As for cost d on
diagonal ab. A row of the ; matrix corresponds
to a diagonal of the D matrix, and a column of the
; matrix to a &&contour'' of "xed cost in the
D matrix. As an example, assume DPA matrix
cell D[i, j] is on the optimal alignment, then in
terms of the ; matrix this cell will be on the
diagonal ab"i!j, and thus;[i!j, D[i, j]]*i.
Given this correspondence between the D matrix
and the ; matrix, we will sometimes discuss the
operation of the Ukkonen algorithm in terms of
the D matrix. Ukkonen's algorithm for two
sequences with "xed mutation costs is given in
Fig. 3.

The outer loop of Ukkonen's algorithm loops
over each entry in the ; matrix to determine for
diagonal ab and cost d how far along string As
can be reached. This is determined by looking at
; with a cost d!1, for point mutation costs of 1,
on the same diagonal ab, and the two neighbour-
ing diagonals ab#1 and ab!1. The inner loop
then extends this distance while strings As and Bs
match, corresponding to a run of matches down
a diagonal of the D matrix. As with the basic
DPA, the alignment is obtained by tracing back
through the choices made in the max( ) function
when calculating the ; matrix.

Thus, in terms of the D matrix, Ukkonen's
algorithm calculates the entries in a region
around the "nal diagonal that has a width equal
to the edit distance of the two strings. So, regions
in the upper right and the lower left of the
D matrix are able to be omitted from the calcu-
lation. There is a further saving when a run of
exact matches occurs in both strings because the
diagonals alongside the run of matches need not
be calculated.
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The worst case time complexity of Ukkonen's
algorithm is easily seen to be O(nd), although in
most cases the average complexity of O (n#d2 )
is achieved. It is not immediately obvious as for
what sequences cause the worst-case perfor-
mance of the algorithm. An example of such
sequences is As"akbl and Bs"blak where k(l.
For simple costs these sequences have an edit
distance of d"2k. When aligning these
sequences with Ukkonen's algorithm and simple
costs, the inner loop (Fig. 3) is iterated l#
(l!1)#(l!2)#2#(l!k)"O(lk) times. The
outer loop is iterated O (d2)"O(k2). Thus, the
time complexity is O(k2#kl) and since k(l and
d"2k this is O (ld).

3.2.1. ;kkonen1s Algorithm with ¸inear
Gap Costs

Ukkonen's algorithm has been applied to
aligning strings using linear gap costs (Yee &
Allison, 1992). As with the DPA for linear costs,
there are three matrices instead of one, one for
each of the possible states of the FSM. The exten-
sion of Ukkonen's algorithm to linear gap costs is
similar to the extension of the basic DPA to the
DPA for linear gap costs.

4. Alignment of Three Sequences

An algorithm for three-way alignment with
simple costs as an extension of the two sequence
DPA is straightforward. This three-way DPA
calculates a three-dimensional &&cube'' of volume
DA D ) DB D ) DC D where DA D , DB D and DC D are the lengths
of the three sequence to be aligned. This
algorithm has a time complexity of O (n3) which
can be prohibitively large for sequences of
any reasonable length. Thus, a more e$cient
algorithm, such as Allison (1993b) or Altschul
& Lipman (1989), Carrillo & Lipman (1988)
is required if realistic sequence data is to be
aligned.

Another complication that arises while align-
ing three sequences is the type of costs to use.
Three commonly used cost types are all-pairs
costs, star costs and tree costs, although for three
sequences tree costs and star costs are the same.
For three sequences, all-pairs costs is the total
cost obtained by summing the three pairwise
costs. Star costs implies a common unknown
parent sequence. The parent sequence is deter-
mined by a consensus vote, and the pairwise cost
between each sequence and the parent are sum-
med together. Star costs are the main focus in this
paper though modi"cation to all-pairs costs
would be straightforward.

4.1. ALIGNMENT OF THREE SEQUENCES

WITH LINEAR GAP COSTS

Alignment of three sequences with linear gap
costs is a complicated extension of alignment for
two sequences. One #avour of three-way align-
ment is to assume that each of the three se-
quences has been generated independently from
a common parent by a three-state FSM. The
alignment problem is to infer from the three se-
quences how they were generated, and thus the
common parent sequence. This three-way align-
ment problem matches the problem of inferring
an evolutionary tree from sequence data. To infer
how the sequences were generated, the state each
of the three FSMs, at every point of the align-
ment must also be determined. Note that if se-
quences to be aligned are assumed to come from
a common ancestor, then three-way alignment,
unlike two-way alignment, can distinguish inser-
tions from deletions and di!erent costs can be
given to them if desired.

As in Section 2 we use M, I and D to denote the
match/change, insert and delete states, respec-
tively. Consider the three-way alignment of the
sequences xyyxz, xxz, and zz:

x y y x z

x } } x z

z } } } z

M I I M M

M M M M M

M M M D M

(i)

or
M M M M M

M D D M M

M D D D M

.

(ii)

The "rst interpretation (i) infers the common
parent sequence is xxz while (ii) infers xyyxz.
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Which is the more likely of these two depends on
the probabilities in the FSMs. Recall that when
one of the FSMs is in the insert state the other
FSMs are idle. Thus, above in the "rst alignment
the FSMs for the second and third sequence are
idle while the two &&y'' characters are inserted in
the "rst sequence.

At every point along the alignment the states
of the three FSMs must be inferred, there are
33"27 possible combinations of these states,
though some will never be inferred. For example,
if a character in the parent sequence has been
deleted from all three child sequences the corre-
sponding states would be DDD and it could not
be reasonably inferred. In fact, it is necessary for
at least one of the FSMs to be in the match state.
The insert state is special because it generates
characters without using the parent sequence,
thus if a FSM is in the insert state, the other two
FSMs can be considered frozen. Therefore, it
is su$cient to allow only one FSM to be in
the insert at a time (e.g. IMI is invalid). Ignoring
the invalid, or useless combinations of states
there are 16 remaining possible combinations of
states.

4.2. USING A DPA

Gotoh (1986) presented an algorithm for the
alignment of three sequences with linear gap
costs; however, this algorithm only allowed com-
binations of states that contain at least two
match states, which gives seven di!erent combi-
nations. Seven di!erent matrices were used, one
for each of these combinations. The computation
performed on these 3D matrices is analogous to
the 2D matrices for two sequences.

Our DPA for three sequences with linear gap
costs is similar to Gotoh's, but allows for all
plausible combinations of the FSMs' states and
thus better matches the model for the sequences.
As an example, consider the three sequences
TGGTATGCTAGCT, TGGTCGATGCTAG
and TGGTCTGATGCTAGCT optimally alig-
ned using the following costs: match cost 0,
change cost 1, gap start-up cost 3, and continue
gap cost 1. The optimal alignments of these
sequences obtained by Gotoh's algorithm and
by our algorithms are shown "rst and second,
respectively.
T G G T } } } C

D D D D

T G G T } } } A

D D D D D

T G G T C T G A

G A T G C T A G

T G C T A G C T

D D D D D D D D

T G C T A G C T

Gotoh's algorithm

T G G T C } G A

D D D D D

T G G T } } } A

D D D D D

T G G T C T G A

T G C T A G } }

D D D D D D

T G C T A G C T

D D D D D D D D

T G C T A G C T

New algorithms

The optimal alignment from Gotoh's algo-
rithm has an edit cost of 15, and the alignment
from our algorithm an edit cost of 14. The reason
for these di!erent alignments are achieved is be-
cause our algorithm allows a run of inserts in
the middle of a run of deletes, thus the third T in
the third sequence is considered an insert. This
is not possible with Gotoh's algorithm.

An optimal alignment for three sequences with
linear gap costs can be found by using a DPA
similar to that for two sequences. The main di!er-
ence is that instead of three matrices, as used for
two sequences, there is a matrix for each of the
possible combinations of states of the three
FSMs.

The heart of the algorithm is shown in Fig. 4,
where the sequences to be aligned are As, Bs and
Cs. This procedure calculates one cell in one
matrix. The function transitionCost calculates
the cost for changing FSM states, for example
to go from the matrix for MID to the matrix
for MDD would have a cost C(Match DM )#
C(Del DI )#C(Del DD), whereas the transition
MMDPMID would have a cost C (Ins DM). The
changeCost function simply calculates the cost
for any change mutations, for example, if the
states of the three FSMs were MDM and the
corresponding characters were x!y, the cost
would be C(Change). If the FSMs' states were
MMM and the characters xyz the cost would be
2]C(Change).



procedure DPAcalcCell(i, j, k, matrix)
set i2, j2, k2 to index of neighbour
bestCost"in5nity

for fromMatrix in AllMatrices

cost"cell[i2, j2, k2, fromMatrix)#
transitionCost (matrix, fromMatrix)#
changeCost(matrix, A[i], B[j], C[k])

bestCost"min(cost, bestCost)

endfor
cell [i, j, k, matrix]"bestCost

endproc.

FIG. 4. Calculation of a cell for a DPA to "nd an optimal
three-way alignment with linear gap costs.

for i"0 . . DAs D
for j"0 . . DBs D

for k"0 . . DCs D
for matrix in AllMatrices

DPAcalcCell (i, j, k, matrix)

FIG. 5. Calculating all cells for a DPA for three-way
alignment with linear gap costs.
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A given cell [i, j, k] in a given 3D matrix
toMatrix is completely determined by the cells
with index [i2, j2, k2] from all matrices. The in-
dex [i2, j2, k2] of this neighbouring cell is deter-
mined by the states of the FSMs for the matrix
toMatrix. That is, a combination of states has
one and only one neighbour in the 3D matrices.
The following table lists the neighbours for some
given FSMs' states if the cell to be calculated it at
[i, j, k]. Note that if one of the FSMs is in the
insert state, the states of the other FSMs are
irrelevant in determining the neighbour.

MMM [i!1, j!1, k!1]

MDM [i!1, j, k!1]

DDM [i, j, k!1]

MIM [i, j!1, k]

MID [i, j!1, k]

To "nd the optimal alignment for three se-
quences with linear gap costs, the routine
DPAcalcCell is called for each cell as shown in
Fig. 5. The edit cost is the cheapest cost in any
cell from the 3D matrices at [ DAs D , DBs D , DCs D].
The optimal alignment is found by backtracking
from here through choices made by the min( )
function.

4.3. USING UKKONEN'S ALGORITHM

The DPA for three sequences with linear gap
costs, runs in O (n3) time, where the three
sequences are of length approximately n. By em-
ploying Ukkonen's algorithm this can be reduced
to O(nd2) in the worst case, and O (d3#n) on
average for sequences that have an edit distance
of d.

As with the DPA base algorithm, there are 27
(reduced to 16 in practice) matrices, one for each
of the possible combinations of FSM states.

The heart of the algorithm is a function
UKKcalcCell (analogous to DPAcalcCell in Sec-
tion 4.2) to calculate the contents of a single cell
(see Fig. 6). This function is called by the function
Ukk (not shown) which is simply a wrapper that
puts the result from UKKcalcCell in a memo
array for any subsequent calls. The function
transitionCost is as before, and the function
countUnique returns the number of unique char-
acters among its three parameters. To make sure
the ends of the sequences are not overrun, the
function pastEnd is used as to make sure every
step is valid.

The cell to be calculated has one neighbour,
analogous to the one neighbour for the DPA
version, the index of this neighbour is put in
ab1,ac1. A loop iterates over all possible matrices
at the cell [ab1, ac1].

The possible changes between the three se-
quences are dealt with in the if then else state-
ment as follows: if the MMM matrix is being
calculated, then there are two possible costs
depending on the characters of the sequences
being all di!erent, or two being the same. If the
step has a null character, &&}'', then the cost of the
step can again take two values depending on
whether the non-null characters are equal. The
"nal possibility is that there is only one non-null
character, in which case there can be only one
possible cost.

If the cell to be calculated corresponds to the
MMM matrix, then there is the possibility of



function UKKcalcCell(ab, ac, d, matrix)
set da, db, dc to direction of neighbour (0 or 1)

ab1"ab!da#dc
ac1"ac!da#dc
bestDist"!in5nity

for fromMatrix in AllMatrices
cost"d!transitionCost (matrix, fromMatrix)

if (matrix equals &MMM1 ) then
cost"cost!changeCost

a1"Ukk(ab1, ac1, cost, fromMatrix)

if (pastEnd (a1, a1!ab1, a1!ac1)) continue

if (countUnique(if (da) then As[a1] else &}',
if (db) then Bs[a1!ab1] else &}',
if (dc) then Cs[a1!ac1] else &}' )

"2) then
Mx}} }x} } }xxx} x}x }xx xxy xyx yxxN

fromCost"cost
dist"a1#da

else Munique"3N
Mxy} x}y }xyxyzN

a1"Ukk(ab1, ac1, cost!changeCost, fromMatrix)
fromCost"cost!changeCost
dist"a1#da

endif

bestDist"max(bestDist, dist)

endfor

MMake sure it is an improvementN
bestDist"max(bestDist, Ukk(ab, ac, d!1, matrix))

if (matrix equals &MMM1) then
bestDist"extendDiagonal (ab, ac, d, matrix, bestDist)

return bestDist
endfunc.

FIG. 6. Calculation of a cell for Ukkonen's algorithm with three sequences and linear gap costs.
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extending the diagonal* along a run of matches.
This is done in the extendDiagonal (not shown)
function. The extendDiagonal function checks all
matrices at [ab, ac, d] to "nd which reaches the
*The term diagonal here is used in reference to the diag-
onals in the D matrix of the DPA algorithm.
furthest along the As sequence. If from this point
there is an exact run of matches the end point of
the run of matches is returned. If there is no run
of matches, the distance reached in the MMM
matrix is returned.

To extract the optimal alignment, the;matrix
must be back-traced through the choices
made in the max( ) function. The whole ;



FIG. 7. Log}log plot of the number of calls to UKK
calcCell against edit distance. ( ) Run1; ( - - - - ) d3.

FIG. 8. Plot of the inner loop iterations against edit
distance for sequences of approximately 2000 characters.
( ) Run1; ( - - - - ) n#d3/C.
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matrix is required for this, thus O (d3) space
is needed. If only the edit distance is required
then the algorithms needs only O (d2) space.

5. Results

The program implementing the three-sequence
alignment with Ukkonen's algorithm and linear
gap costs is fairly complex. To ensure the correct-
ness of the program we performed extensive testing.
Some of the more rigorous testing procedures are
explained below.

The "rst test was to compare the results of the
program with the results of a program implemen-
ting the DPA version of the algorithm. The three
input sequences were independent random se-
quences of random length over an alphabet of
four characters. This test was performed for sev-
eral thousand di!erent alignments with sequence
length varying from 0 to about 2000, while
the edit distance ranged from 0 to about 150.
The edit costs produced by both algorithms were
the same.

The second test was to take the alignment
produced by the Ukkonen version of the
program, and from that determine the inferred
parent sequence. This parent sequence was then
aligned one at a time with each of the three input
sequences. The pairwise alignment was per-
formed with a program implementing two-way
alignment with linear gap costs. As before, this
test was performed several thousand times with
similar ranges of lengths and edit distances as for
the previous test. The sum of the three edit costs
from the pairwise alignments was equal to the
edit cost from the three-way alignment.

To illustrate the usefulness of our new
Ukkonen-based algorithm for three sequences
over the DPA-based algorithm, we ran our pro-
grams implementing both algorithms on some
real biological sequences. We selected clipped
DNA sequences from the Transthyretin gene for
a human, a mouse and a rat. The Genbank ids
of the sequences used are HUMPALA(27-470),
MMALBR(27-467) and RATPALTA(10-453),
respectively. The costs used are as follows: 0 for
a match, 1 for a change, 3 to start a gap, 1 to
continue a gap. Under these costs, the edit dis-
tance of the three sequences is 109. These se-
quences were aligned with the Ukkonen-based
algorithm for three sequences with linear gap
costs in 6 CPU-min using about 90 Mbytes of
memory on a Cyrix 686 with 192 Mbytes of
memory. We were unable to align these se-
quences using the DPA-based algorithm since
around 3 Gbytes of memory would be needed
and a projected runtime of over 1 CPU-h.

The time complexity of the algorithm pre-
sented in Section 4.3 is not obvious. The algo-
rithm exhibits an average time complexity of
O(d3#n). Figure 7 shows the number of calls to
the UKKcalcCell function which asymptotes to
d3. The inner loop iterations are along runs of
matches; Fig. 8 shows this to be less than O (d3).



FIG. 9. Log}log plot of running time vs. edit distance.
( ) Run1; ( - - - - ) d3.
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The &&n'' comes from the fact that for similar
sequences of length n there are O (n) matches
along the optimal alignment. The rest of the
iteration in the inner loop comes from matches
o! the optimal alignment.

A log}log plot of the actual running time
against edit distance is shown in Fig. 9. From this
it can be seen that the running time also asymp-
totes to d3.

6. Conclusion

The algorithms discussed in this paper can be
classi"ed by three di!erent attributes: alignment
of two or three strings; "xed costs or linear gap
costs; standard DPA or the faster Ukkonen algo-
rithm. Previously known algorithms were discussed
to show how they "t into this classi"cation, and
to provide a framework to present our contribu-
tions.

The "rst new algorithm we presented was for
the problem of aligning three sequences optimal-
ly using linear gap costs and was based on the
standard DPA. This algorithm has complexity
O(n3) in both time and space. We made clear the
model of generating the three sequences from
a common parent sequence, and showed how the
costs used in the alignment algorithms relate to
the probabilities for a match, mismatch, insertion
and deletion for this model.

Using previously known algorithms as ex-
planatory stepping-stones we presented our
major contribution, an algorithm for three-string
alignment using linear gap costs with the e$-
ciency of the Ukkonen (1983) algorithm. Our
algorithm produces the same results as the
above-mentioned DPA-based algorithm, how-
ever, the Ukkonen-based algorithm is signi"-
cantly faster for similar sequences. The average
time complexity exhibited was O (d3#n) with
a space complexity of O(d3) or O(d2) if only the
edit distance was desired. This makes it feasible
to use our new Ukkonen-based algorithm to
align biological sequences of realistic lengths
where the DPA-based algorithms such as Gotoh
(1986) are not.
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