Lagrange multiplier
- To minimise f(x), subject to the constraint g(x) = c, consider
- Λ(x, λ) = f(x) + λ { g(x) - c }.
- λ is known as the "Lagrange multiplier."
- λ is known as the "Lagrange multiplier."
- Solve
- ∇ Λ(x, λ)
= (∂Λ/∂x1, ..., ∂Λ/∂xn, ∂Λ/∂λ)
= 0
- For example, given positive integers {n1, ..., nk}, minimise
- n1 log p1 + ... + nk log pk
- subject to
- p1 + ... + pk = 1,
- let
- Λ(p, λ)
= n1 log p1 + ...
+ nk log pk
+ λ{p1 + ... + pk - 1},
- ∇ Λ = (n1/p1 + λ, ..., nk/pk + λ, p1 + ... + pk - 1) = 0,
- so
- pi = - ni / λ ∝ ni (λ can be negative)
- and
- ∑ pi = 1,
- giving
- pi = ni / ∑j nj (and λ = - ∑j nj).
- (Also see the [multinomial] probability distribution.)