Calculus
f | Taylor expansion, f(c+x) = f(c) + (f'(c)/1!).x + (f''(c)/2!).x2 + (f'''(c)/3!).x3 + ... |
---|---|
1 / (1+x)r | 1 - r x + r.(r+1)/2! x2 - r.(r+1).(r+2)/3! x3 + ... |
1 / (1 - x)r | 1 + r x + r.(r+1)/2! x2 + ... |
log(1+x) | x - 1/2 x2 + 1/3 x3 - ... |
log(1 - x) | - x - 1/2 x2 - 1/3 x3 - ... |
sin x | x - x3/3! + x5/5! - x7/7! + ... |
cos x | 1 - x2/2! + x4/4! - x6/6! + ... |
sinh x | 1 + x3/3! + x5/5! + ... |
cosh x | 1 + x2/2! + x4/4! + ... |
f(x) | derivative, d/dx f(x) |
---|---|
c | 0 |
xn | n.xn-1 |
loge x | 1/x |
x-n | -n.x-n-1 |
ex | ex |
xx | xx(ln(x) + 1) |
sin x | cos x |
cos x | - sin x |
tan x | 1/cos2x = 1+tan2x |
sinh x | cosh x |
cosh x | sinh x |
tanh x | 1 - tanh2 x = 1/cosh2 x |
f(x)+g(x) | f' + g', where f'=d/dx f, & g'=d/dx g |
f(x) g(x) | f'g + fg' |
f(x)/g(x) | (f'g - fg')/g2 |
f(g(x)) | f'(g(x)) g'(x), the chain rule |
f -1x | 1/(f'(f -1x)), if f -1 is the inverse function of f, x=f y, f -1(f(y))=y, f(f -1x)=x |
f(x) | indefinite integral ∫ f(x) dx |
---|---|
xn | (1/(n+1)).xn+1, n≠-1 |
x-1 | log x |
f(x) | indefinite ∫ f (x) dx | -∞∫+∞ f(x) dx |
---|---|---|
1 / (a+x2)k | x .{hg([1/2,k], [3/2], -x2/a)} / ak | √π.Γ(k - 1/2) / {a(k-1/2).Γk} |
x2 / (a+x2)k | ? | √π.Γ(k - 3/2) / {2.a(k-3/2).Γk} |
meaning | |
---|---|
hg() | hypergeometric() |
Γ | Γ function; for int n, Γn=(n-1)! |